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Abstract

Consider a committee election consisting of (i) a set of candidates
who are divided into arbitrary groups each of size exactly two and a di-
versity constraint that stipulates the selection of at least one candidate
from each group and (ii) a set of voters who are divided into arbitrary
populations each approving exactly two candidates and a representation
constraint that stipulates the selection of at least one candidate from each
population’s set of approved candidates.

The DiRe (Diverse + Representative) committee feasibility problem
(a.k.a. the minimum vertex cover problem on unweighted undirected
graphs) concerns the determination of the smallest size committee that
satisfies the given constraints.

Here, for this problem, we discover an unconditional deterministic
polynomial-time algorithm that is an amalgamation of maximum match-
ing, breadth-first search, maximal matching, and local minimization.

∗This work, while the author was a student at New York University, was generously sup-
ported in part by Julia Stoyanovich’s NSF grants No. 1916647, 1934464, and 1916505. Inde-
pendent Researcher. Correspondence: kunal.relia91@gmail.com or krelia@nyu.edu.
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Preface: The DiRe committee feasibility problem (stated in the abstract) and
the vertex cover problem on unweighted undirected graphs are equivalent (ver-
tices = candidates; edges = candidate groups / voter populations’ approved can-
didates). Hence, for technical simplicity, we henceforth focus the discussion on
the latter problem.

1 Introduction

Given an unweighted undirected graph (specifically, a 2-uniform hypergraph),
the vertex cover of the graph is a set of vertices that includes at least one
endpoint of every edge of the graph. Formally, given a graph G = (V,E)
consisting of a set of vertices V and a collection E of 2-element subsets of V
called edges, the vertex cover of the graph G is a subset of vertices S ⊆ V that
includes at least one endpoint of every edge of the graph, i.e., for all e ∈ E,
e ∩ S ̸= ϕ. The corresponding computational problem of finding the minimum-
size vertex cover (MVC) is NP-complete1 [Coo71, Lev73, Kar72], which means
that there is no known deterministic polynomial-time algorithm to solve MVC.
Here, we present an unconditional deterministic polynomial-time algorithm for
MVC on unweighted simple connected graphs2.

We sparingly use “Non-technical Comment” boxes in this paper. These com-
ments are not a part of the paper in a technical sense but they provide important
answers to some non-technical but important “whys” and “so whats” of the pa-
per. It may help a reader relate to the journey of working on the paper.

Non-technical Comment: A chance re-encounter with one of Aesop’s fa-
bles, “The Fox and the Grapes”, from my childhood days was a motivation to
begin thinking about this paper. By calling the DiRe committee feasibility prob-
lem “hard” (NP-hard), was I being the fox who found the grapes sour instead of
my inability to find an efficient algorithm to reduce inequality?

1Strictly speaking, the decision version of the vertex cover problem is NP-complete whereas
MVC itself (search version) is NP-hard. See Section 2.1 of [Kho19] for a lucid explanation
delineating (a) search and decision problems and (b) NP-hardness and NP-completeness.

2We subtly yet drastically switch the discussion from unweighted undirected graphs to
unweighted simple connected graphs. For simplicity, we want to avoid having loops and/or
unconnected components in the graph. In the context of this paper, this switch has no impact
on the NP-completeness of the problem. Notwithstanding, in the case of the presence of
loops, our algorithm will work (with minor modifications) if each loop is replaced by adding
a dummy vertex and a corresponding edge. In the case of unconnected components, we can
run the algorithm for each connected component independently and take a union of each of
the minimum vertex covers to get the final minimum vertex cover.
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2 Notation and Preliminaries

We now formally define the computation problems related to finding the vertex
cover of a given graph. First, we define the search/optimization problem:

Definition 1 (Minimum Vertex Cover Problem (MVC)). Given a graph G,
what is the smallest non-negative integer k such that the graph G has a vertex
cover S of size k?

Next, we restate the above as a decision problem:

Definition 2 (Vertex Cover Problem (VC)). Given a graph G and a non-
negative integer k, does the graph G have a vertex cover S of size at most k?

Unless stated otherwise, we henceforth discuss solving VC (i.e. Definition 2),
which is actually NP-complete.

3 Algorithm Overview

The algorithm is broadly divided into four phases. The first three phases are
(slightly adapted versions of) algorithms for three known problems, namely
maximum matching, breadth-first search, and maximal matching. The last
phase is a technique we call local minimization. We now discuss these phases
and give an overview of the algorithm.

Definition 3 (Matching). Given a graph G, a matching M is a subset of the
edges E such that no vertex v ∈ V is incident to more that one edge in M .

Alternatively, we can say that given a graph G, no two edges in a matching
M have a common vertex.

3.1 Maximum Matching

Phase 1 of the algorithm finds maximum matching of the input graph:

Definition 4 (Maximum Matching). Given a graph G, a matching M is said
to be maximum if for all other matching M ′, |M | ≥ |M ′|.

Equivalently, the size of the maximum matching M is the (co-)largest among
all the matching. Next, there is a known relationship between the size of maxi-
mum matching and the size of minimum vertex cover:

Lemma 1. In a given graph G, if M is a maximum matching and S is a
minimum vertex cover, then |S| ≥ |M |.

Lemma 1 means that the largest number of edges in a matching does not
exceed the smallest number of vertices in a cover. We use this fact to set a lower
bound on the size of the minimum vertex cover and terminate the algorithm
early if the integer k is less than |M |.
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3.2 Breadth-first Search

Phase 2 of the algorithm stores the vertices at each level of the tree derived
using breadth-first search (BFS):

Definition 5 (Breadth-First Search). Given a graph G, a Breadth-first Search
(BFS) algorithm seeds on a root vertex v ∈ V and visits all vertices at the
current depth level of one. Then, it visits all the nodes at the next depth level.
This is repeated until all vertices are visited.

While the BFS algorithm is canonically a search algorithm, we use it here
to derive a tree. This tree itself is not needed. Only the information of the level
at which each vertex is in the tree is stored for use during the third phase.

3.3 Maximal Matching

Phase 3 of the algorithm entails the use of maximal matching.

Definition 6 (Maximal Matching). Given a graph G, a matching M is said to
be maximal if for all other matching M ′, M ̸⊂ M ′.

In other words, a matching M is maximal if we cannot add any new edge
e ∈ E to the existing matching. During this maximal matching phase, the edges
are selected using a specific procedure that uses information stored (i) regarding
the edges that are a part of the maximum matching and (ii) about the vertices
present at each level of the tree derived using BFS. Additionally, during each
iteration of maximal matching, the algorithm stores the current neighboring
vertices of each endpoint. We call this as an endpoint vertex representing its
neighboring vertex.

Definition 7 (Represents3). Given a graph G, a vertex u ∈ V is said to rep-
resent a vertex v ∈ V when vertex v is currently connected to vertex u by an
edge e ∈ E. Conversely, vertex v is represented by vertex u.

Observe that when some vertex u currently represents a vertex v, the algo-
rithm is essentially storing information about the presence of an edge connecting
the two vertices. There is stress on the word currently as for a given iteration,
an edge should not have been removed. The information is stored in represents
table that consist of represents lists.

Definition 8 (Represents Table). A represents table R is a 2-column table that
stores the endpoints of edges selected during maximal matching and the vertices
each endpoint represents.

Definition 9 (Represents List). Given a represents table R, a vertex u ∈ V
that is represented by a vertex v ∈ V is said to be in the represents list of v.

3The term is inspired by a type of multiwinner election where the aim is to elect the
smallest committee that represents every voter. In our context, we want to select the smallest
set of vertices that covers (represents) each edge.
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Finally, in the last step of an iteration of the maximal matching phase,
the algorithm removes the edge that connects (i) the two endpoints and (ii)
endpoints and their respective neighbors.

Example 1. Consider the following graph G:

0 1 2 3

During maximal matching, assume that the algorithm first selects the edge con-
necting vertex 0 and vertex 1. Then, the endpoints of the selected edge are 0
and 1. For each endpoint, the algorithm stores the information of the vertices
it represents. Here, vertex 0 represents {1} and vertex 1 represents {0, 2}. All
the edges connected to the two endpoints in any way are removed.

0 1 2 3

In the next iteration of maximal matching, the algorithm selects the edge con-
necting vertex 2 and vertex 3. The two endpoints represent each other only.
Specifically, vertex 2 represents {3} and vertex 3 represents {2}. All the edges
connected to the two endpoints in any way are removed.

0 1 2 3

Finally, the following information is stored by the algorithm:

Node 1 Node 2

0 - {1} 1 - {0, 2}
2 - {3} 3 - {2}

Table 1: Information stored in a “Represents Table” R after the end of
maximal matching phase.

The information contained in row 1 under “Node 2” of Table 1 is: vertex 1
is an endpoint vertex that represents vertices 0 and 2. Conversely, vertices 0
and 2 are represented by endpoint vertex 1. Also, vertices 0 and 2 are in the
represents list of endpoint vertex 1.

Two known facts related to maximal matching will be useful later:

Lemma 2. The endpoints of a maximal matching form a vertex cover.

Lemma 3. In a graph G, if a matching M is maximum, it implies the matching
M is also maximal. The converse does not hold.

We specifically use Lemma 3 in Section 5 and explain why the third phase
is called maximal matching and not maximum matching.
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3.4 Local Minimization

The last Phase, local minimization, is a new technique. It is not adapted from
any known techniques to the best of our knowledge. Also, note that our version
of local minimization is not related to the local search used in heuristic algo-
rithms. We use the term local in local minimization because the vertex cover
we get at the end of this phase is the “smallest” and not necessarily minimum.
Specifically, the vertex cover we get is dependent on the endpoints of the edges
selected during the maximal matching phase. Hence, from a given set of ver-
tices, local minimization phase uses three stages to select a vertex cover of the
smallest possible size, which may not be the minimum vertex cover:

1. Freeze “necessary” vertices: Freeze each endpoint v in the represents
table R that represents a vertex u that is not an endpoint in R. Vertex
u can not be in the vertex cover S as it is not an endpoint of any edge
selected during maximal matching. Hence, vertex v necessarily needs to
be a part of the vertex cover to cover the edge connecting u and v.

2. Top-down removal of “terminal” vertices: Remove each endpoint
with degree one in graph G. The other endpoint is simultaneously frozen.

3. Bottom-up freeze and remove: Freeze and remove “necessary” and
“terminal” vertices, respectively, based on the current state of table R.

Definition 10 (Local Minimization). Given a graph G, a subset of vertices
V ′ ⊆ V that covers all edges and for each vertex v ∈ V ′ the list of vertices
it represents, the local minimization selects the smallest sized subset of vertices
S′ ⊆ V ′ such that each edge is covered.

3.5 Summary

The algorithm we discovered is an amalgamation of the above-discussed phases.
The sequential implementation of these phases ensures we get a minimum ver-
tex cover cover. At a high-level, this is because: (i) Maximum matching and
breadth-first search ensures that the edges selecting during the maximal match-
ing phase follows a procedure as opposed to vanilla maximal matching where
edges are selected randomly. (ii) Maximal matching implies we get a vertex
cover. (iii) Local minimization ensures we get the smallest vertex cover. Over-
all, the combination of all these implies we get the minimum vertex cover.

Non-technical Comment: As discussed, the flow of the algorithm is as fol-
lows: maximum matching → breadth-first search → maximal matching → local
minimization. However, the evolution of the algorithm happened in the following
order: maximal matching → local minimization → breadth-first search → max-
imum matching. Indeed, eventually “prefixing” the algorithm with maximum
matching helped us deal with the messy cycles, especially odd cycles. Recall that
Blossom algorithm [Edm65] had to do “extra work” just to deal with odd cycles.
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4 Algorithm

We now present the core contribution of this paper, an algorithm to solve the
VC problem. In the algorithm, all ties are broken and all ordering (sorting) of
vertices is done based on lexicographic ordering unless noted otherwise. The
ordering does not impact the correctness but ensures that for same input, the
output remains the same.

Algorithm 1: Vertex Cover(G, k)

Data: Graph G = (V,E), non-negative integer k
Result: returns “YES” if there is a vertex cover S of size at most k,

“NO” otherwise

1: Vs = lexicographically sorted vertices

2: EM = maximum matching found using the Blossom Algorithm [Edm65]

3: if k < |EM | then
4: return “NO”
5: end

6: for each v ∈ Vs do

7: BFSlevel = an array of arrays storing sorted vertices at each level of

breadth-first search tree seeded on v

8: R = Maximal Matching(G, EM , BFSlevel)

9: S = Local Minimization(R)

10: if |S| ≤ k then
11: return “YES”
12: end

13: end
14: return “NO”

Non-technical Comment: The technical discussion for each of the phases of
the algorithm will follow in the succeeding sections. Here, we share our non-
technical motivation for including maximum matching and BFS phases in the
algorithm. Our guiding question was “Is it possible that we have missed out
on considering all the factors that decide the vertices being selected to form
the minimum-size vertex cover?” Such factors may not be given to us in the
traditional sense and hence, may not be “visible”. We may have to infer them to
use them. We do so in this paper. Given an unweighted undirected graph for VC
problem, maximum matching and BFS lend inherent edge weights and directions,
respectively. After traversing through the algorithm, it will be intuitively evident
that during maximal matching, each edge carries certain “weight” and the edge
selections happen in particular “direction”. Thus, identifying and including such
factors was another motivation for this paper.
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Algorithm 2: Maximal Matching(G, EM , BFSlevel)

Data: Graph G = (V,E), Edges in maximum matching EM , Levels at
which each vertex is present after BFS BFSlevel

Result: returns R - Represents Table

1: R = a two-column table, Represents Table, that stores the endpoints of
an edge selected during maximal matching and the corresponding
vertices each endpoint represents

2: for each level in BFSlevel do
3: while there is an unvisited vertex in level do
4: if there exists an edge that connects two vertices on the same

level and is in EM then
5: select the edge
6: else if there exists an edge that connects two vertices on the

same level and is not in EM then
7: select the edge
8: else if there exists an edge that connects one vertex on the

current level with another vertex on the next level and is in EM

then
9: select the edge

10: else
11: select the edge that connects one vertex on the current level

with another vertex on the next level and is not in EM

12: end
13: Mark the two endpoints of the selected edge as visited in

BFSlevel

14: Append after the last row of R the two endpoints of the selected
edge and the respective vertices each endpoint represents

15: Remove from graph G the selected edge and all the edges that
are connected to the two endpoints

16: If any vertex becomes edgeless in G, mark the vertex as visited
in BFSlevel

17: end

18: end
19: return R
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Algorithm 3: Local Minimization(R)

Data: Represents Table R
Result: returns S - the smallest vertex cover

1: S = ϕ
2: P = set of endpoints in R selected during maximal matching
3: for each endpoint vertex v in R do
4: if v represents at least one vertex not in P then
5: //freeze vertex v but do not remove any vertex from R
6: R, S = Freeze and Remove(R, S, v, ϕ)

7: end

8: end
9: // The following for loop will traverse through the table R top-down

10: for each row in R do
11: if if any one endpoint in row is either frozen or removed then
12: continue
13: else if one endpoint u in row only represents another endpoint

vertex v in row and v represents more than one vertex then
14: if u is not represented by any endpoint in R other than v then
15: R, S = Freeze and Remove(R, S, v, u)
16: end

17: end

18: end
19: // The following for loop will traverse through the table R bottom-up
20: for each row in R do
21: if (if both endpoints are frozen) or (one endpoint is frozen and one

is removed) then
22: continue
23: else if endpoint u remains and endpoint v is removed then
24: R, S = Freeze and Remove(R, S, u, ϕ)
25: else
26: //at this point, both endpoints u and v in row represent exactly

one vertex, namely each other
27: if u is represented by more endpoints in R than v then
28: R, S = Freeze and Remove(R, S, u, v)
29: else if v is represented by more endpoints in R than u then
30: R, S = Freeze and Remove(R, S, v, u)
31: else
32: R, S = Freeze and Remove(R, S, u, v)
33: end

34: end

35: end
36: return S
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Algorithm 4: Freeze and Remove(R, S, freeze, remove)

Data: Represents Table R, Vertex Cover S, vertex to be frozen freeze,
vertex to be removed remove

Result: returns Represents Table R, Vertex Cover S

1: Remove vertex remove and its represents list from R
2: Freeze vertex freeze in R
3: Append vertex freeze to S
4: Remove vertex freeze from every represents list in R
5: Remove the represents list of vertex freeze in R
6: for each non-frozen and unremoved endpoint in R that represents

remove do
7: R, S = Freeze and Remove(R, S, endpoint, ϕ)
8: end
9: for each non-frozen and unremoved endpoint in R that does not

represent any vertex do
10: R, S = Freeze and Remove(R, S, ϕ, endpoint)
11: end
12: return R, S

5 Proof of Correctness

In this section, we show the correctness of the algorithm by proving the following
theorem:

Theorem 1. Algorithm 1 returns “Yes” if and only if a given instance of VC
is a “Yes” instance.

We prove the theorem through a sequence of lemmas. Foremost, in the
forward direction, we have the following lemma:

Lemma 4. If a given instance of VC is a “Yes” instance, then the Algorithm 1
returns “Yes”.

Proof. If the given instance of VC is a “Yes” instance, then Line 4 of Algorithm 1
can never return “No” as k ≥ |EM | (Lemma 1). Also, the execution will never
reach Line 14 of Algorithm 1 as Line 11 will return “Yes” during one of the
m iterations when Algorithm 3 finds the minimum vertex cover because k ≥
|S|.

Next, in the reverse direction, we have the following lemma:

Lemma 5. If the Algorithm 1 returns “Yes”, then the given instance of VC is
a “Yes” instance.

We prove Lemma 5 in the following sequence: (i) we prove that variable S in
Line 9 of Algorithm 1 is always a vertex cover (Lemma 6), (ii) we prove that this
vertex cover is the smallest vertex cover based on the endpoints selected during
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maximal matching (Lemma 7), and (iii) there exists at least one minimum vertex
cover among the m smallest vertex covers (Lemma 8).

Lemma 6. Variable S in Line 9 of Algorithm 1 is a vertex cover.

Proof. Algorithm 2 is an algorithm for maximal matching. The endpoints of
the edges selected during maximal matching form a vertex cover (Lemma 2).
However, Algorithm 3 removes some of these endpoints. But an endpoint is
removed only if every endpoint that represents the removed endpoint is (i)
already frozen4 or (ii) is immediately frozen. This is equivalent to ensuring that
each edge has at least one endpoint in the set of vertices. This implies that the
set of vertices returned by Algorithm 3 is a vertex cover. Hence, variable S in
Line 9 of Algorithm 1 is a vertex cover.

Lemma 7. Given a set of endpoints V ′ ⊆ V of edges selected during maximal
matching, variable S in Line 9 of Algorithm 1 is the smallest vertex cover such
that for all vertex covers S′ ⊆ V ′, |S| ≤ |S′|.

Proof. Based on Lemma 6, S is guaranteed to be a vertex cover. Hence, it
remains to be proven that S is the smallest vertex cover derivable from the
endpoints selected during maximal matching (Algorithm 2). To do so, we use a
couple of observations:

Observation 1. Given a represents table R consisting of r rows, an endpoint
vertex v in row i cannot represent an endpoint vertex u in row j, for all j < i
where i, j ∈ N and 1 ≤ i, j ≤ r.

When an edge is selected during maximal matching, all the edges covered
by two of its endpoints are removed. Simultaneously, the represents table R
is updated to reflect the two endpoints and the vertices each of the endpoints
represent (Line 14 - Algorithm 2). Hence, the succeeding entry in R can not
represent any of the endpoints already present in the table R.

Next observation is related to the distance between (i) an endpoint and the
vertices it represents and (ii) the endpoint and the endpoints it is represented
by. Such distance is at most one level in the BFSlevel.

Observation 2. Given a represents table R and a BFS level table BFSlevel, an
endpoint vertex v in R at level i in BFSlevel can represent or can be represented
by a vertex u that is at level i− 1, i or i+ 1 in BFSlevel.

Finally, we proceed to show that variable S in Line 9 of Algorithm 1 is the
smallest vertex cover such that for all vertex covers S′ ⊆ V ′, |S| ≤ |S′|. To do
so, we prove that Algorithm 3 returns the smallest vertex cover derivable from
the endpoints selected during maximal matching (Algorithm 2).

• Lines 2 to 8 of Algorithm 3 freezes “necessary” vertices: Variable P (Line
2 - Algorithm 3) consists of the endpoints of the edges selected by Algo-
rithm 2. Any endpoint v in represents table R that represents a vertex

4Recall that a frozen vertex is implicitly always added to the set of vertices S.
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not in P needs to be frozen and added to the vertex cover S. If a vertex
u is not in P , it implies that, by design, it will not be in the vertex cover.
Hence, any vertex that is connected to u via an edge will be an endpoint
in R and in turn, it needs to be in the vertex cover.

• Lines 10 to 18 of Algorithm 3 removes “terminal” vertices: A terminal
vertex u in a connected graph does not bring value to the vertex cover
because (i) it represents one vertex v and (ii) it is represented by one vertex
v. On the other hand, given that the graph G is connected and consists
of more than two vertices5, vertex v either (i) represents more than one
vertex or (ii) is represented by more than one vertex or (iii) both. Hence,
removing vertex u and freezing v is appropriate. Vertex v is added to
the vertex cover S. Importantly, due to the presence of recursive calls in
Algorithm 4, the loop in Line 10 of Algorithm 3 is executed top-down. At
this stage, a top down execution will facilitate removal or freezing of more
vertices by the recursive calls of Algorithm 4 as compared to a bottom-up
execution (Observation 1).

• Lines 20 to 35 of Algorithm 3 freezes and removes the current “neces-
sary” and “terminal” vertices, respectively: The execution of the loop in
Line 20 will happen bottom-up. During ith iteration of the loop, if both
the endpoints are neither frozen nor removed, then it implies that the
endpoints represent each other only. Hence, we freeze the endpoint that
is represented by more number of endpoints in R and remove the other.
Due to Observation 2, the decision to freeze the endpoint that is repre-
sented more in R is valid. In case both the endpoints are represented by
the same number of endpoints, tie is broken based on lexicographical or-
dering (as discussed at the beginning of Section 4). Note that represents
table R is continuously updated after each freeze or remove operation.
Consequently, the represents list of each endpoint gets updated and it
may become a necessary or a terminal vertex6. This is handled by Line
7 and 10 of Algorithm 4, respectively. Specifically, Line 7 of Algorithm 4
freezes an endpoint that represents a removed vertex. By induction, this
is like removing terminal vertices and freezing its neighboring endpoints,
but dependent on the current state of the represents table R. Similarly,
Line 10 of Algorithm 4 removes an endpoint that does not represent any
vertex based on the current state of the represents table R. This is a valid
removal as the vertex had not been frozen yet and it does not represent
any vertex in the latest iteration.

The above discussed sequential implementation of freezing “necessary” ver-
tices, removing “terminal” vertices, and freezing and removing the current
“necessary” and “terminal” vertices, respectively, ensures that the frozen ver-
tices (equivalently, the vertices in vertex cover S) form the smallest vertex cover.

5In case the graph G has two vertices, it is a trivial case and any one vertex will form the
minimum vertex cover. It is handled by Line 32 of Algorithm 3.

6We stress on the word “current” due to the continuous updates to represents table R.
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In summary, Algorithm 3 returns the smallest possible vertex cover derivable
from the endpoints in R given as input. Formally, variable S in Line 9 of
Algorithm 1 is the smallest vertex cover such that for all vertex covers S′ ⊆ V ′,
|S| ≤ |S′| where V ′ are the endpoints in R.

Lemma 8. Given m sets of endpoints V ′ ⊆ V of edges selected during maximal
matching, there is at least one set V ′ that is a super-set of the set of vertices in
the minimum vertex cover.

Proof. Algorithm 3 (local minimization) finds the smallest vertex cover from a
given set of vertices (Lemma 7). We now show that the input to Algorithm 3
consists of the following cases, each of which ensures that for every graph G,
Algorithm 3 will find its minimum vertex cover:

• perfect matching7 (all vertices): When Algorithm 2 (maximal matching)
finds a perfect matching, all vertices will be added as endpoints in the
represents table R. Hence, the smallest vertex cover that Algorithm 3
returns is indeed the minimum vertex cover.

• maximum matching: There can be multiple maximum matching in a
graph. Algorithm 1 uses one maximum matching. Hence, there are four
possibilities:

1. endpoints of the maximum matching EM is a super set of the mini-
mum vertex cover and Algorithm 2 traverses through EM : This is a
trivial case and Algorithm 3 returns the minimum vertex cover.

2. endpoints of the maximum matching EM is not a super set of the
minimum vertex cover and Algorithm 2 traverses through EM : This
case implies that there is some other maximum matching E′

M whose
endpoints are a super set of the minimum vertex cover. In such cases,
Algorithm 2 may traverse through EM during an initial iteration.
However, there will always be an iteration of BFS seeded on a vertex
not an endpoint in EM that will eventually ensure that Algorithm 2
traverses through E′

M , which implies that Algorithm 3 returns the
minimum vertex cover.

3. endpoints of the maximum matching EM is a super set of the min-
imum vertex cover and Algorithm 2 does not traverse through EM :
This case may occur when the seed for BFS is not an endpoint of
EM . There are two sub cases here: (i) the graph consists of odd
cycles and hence there is another maximum matching or maximal
matching that Algorithm 2 traverses through and whose endpoints
are a super set of minimum vertex cover. Here, Algorithm 3 returns
the minimum vertex cover. (ii) the another maximum matching that
Algorithm 2 traverses through is not a super set of minimum vertex

7A perfect matching MP matches all the vertices of a graph. Hence, |MP | = m
2
.
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cover and hence Algorithm 3 does not return the minimum vertex
cover. In such a case, the loop in Algorithm 1 will continue to it-
erate over different seeds of BFS and there always exists one seed
that is an endpoint of an edge in EM . This implies that Algorithm 2
will eventually traverse through EM and Algorithm 3 will return the
minimum vertex cover.

4. endpoints of the maximum matching EM is not a super set of the
minimum vertex cover and Algorithm 2 does not traverse through
EM : This case, in principle, is equivalent to point 2 but the order-
ing of the seeds selected for BFS are reversed. During the initial
iterations, Algorithm 2 not traversing through EM implies it tra-
verses through another maximum matching or maximal matching
whose endpoints is a super set of minimum vertex cover. In turn,
this implies that Algorithm 3 returns the minimum vertex cover. For
example, this happens when the input graph is a wheel graph. The
maximum matching EM may only consist of edges on the boundary.
However, there is another maximum matching E′

M that consists of an
edge whose one endpoint is the center vertex of the wheel graph and
hence, collectively, whose endpoints are a super set of the minimum
vertex cover. Note that, by design, Algorithm 2 in wheel graphs will
never traverse through EM .

• maximal matching: Depending on the seed of BFS selected in Algorithm 1,
an iteration may result into Algorithm 2 selecting edges that form a max-
imal matching that is not necessarily a maximum matching (Lemma 3).
This is why the third phase is called maximal matching. During such an
iteration, there are two possibilities:

1. endpoints of the maximal matching in Algorithm 2 is a super set of
the minimum vertex cover : This is a trivial case and Algorithm 3
returns the minimum vertex cover.

2. endpoints of the maximal matching in Algorithm 2 is a not super set
of the minimum vertex cover: This case may occur even when the
seed of BFS is a vertex that is an endpoint of an edge in maximum
matching EM . However, this seed is a terminal vertex (i.e. a vertex
with degree = 1 in graph G). Hence, during one of the iterations of
loop in Algorithm 1 when the the BFS is seeded on a non-terminal
vertex that is an endpoint in EM , one of the cases discussed in “maxi-
mum matching” will occur and Algorithm 3 will return the minimum
vertex cover.

These cases complete the proof for this lemma.

Lemma 9. Algorithm 3 returns a minimum vertex cover.

Proof. The proof follows due to a combination of Lemma 6, Lemma 7 and
Lemma 8. Specifically, Lemma 6 proved that S is a vertex cover, Lemma 7
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proved that S is the smallest vertex cover and Lemma 8 proved that there is
at least one iteration where the input to Algorithm 3 consists of a super set of
the minimum vertex cover and it returns a minimum vertex cover. Hence, as a
combination of these lemmas, S is indeed the minimum vertex cover.

Overall, Lemma 9 means that if Algorithm 1 returns “Yes”, then the given
instance of VC is a “Yes” instance. This completes the proof in the reverse
direction. In turn, it completes the proof of Theorem 1.

6 Time Complexity Analysis

In this section, we discuss the time complexity of the algorithm (Table 2, Table 3,
Table 4, Table 5). m denotes the number of vertices V and n (≤ m2) denotes
the number of edges E.

In each table, we give the complexity of each line (each operation), the
complexity of the loop (complexity of line multiplied by the number of loop
iterations) and the dominant complexity. For convenience, the beginning of a

loop, specifically the number of loop iterations, is highlighted (e.g., Line 6 in
Table 2). Each statement within the loop is prefixed with a pointer (▶). In case
of nested loops, an additional pointer (▷) is used.

Time complexity of Algorithm 4: We elaborate upon the time complexity
of Algorithm 4 because the time complexity of the remainder of the algorithms
is self-explanatory from the respective tables. In Algorithm 4, we have recursive
calls (line 7 and line 10). However, by design, Algorithm 4 can be called m times
only. This is because each time it is called, at least one vertex is either removed
or frozen. Hence, after m calls, no unfrozen or unremoved vertex will exist.
Each call takes O(m2) time. Overall, in the worst case, height of recursion tree
is m and each level has one subproblem taking O(m2). Thus, total complexity
is O(m)·O(m2) =O(m3).

Theorem 2. The asymptotic running time of Algorithm 1 is O(m3n2).

Proof. Line 8 in Algorithm 1 dominates the complexity of all other lines as
shown in Table 2. This dominant complexity is O(m3n2). Hence, the time
complexity of the entire algorithm is O(m3n2).

On one hand, asymptotically, O(n) = O(m2). This is because the maximum

number of edges (n) possible in a simple graph is m·(m−1)
2 , which is less than

m2. On the other hand, asymptotically, O(n) = O(m). This is because the
minimum number of edges (n) needed in a connected graph is m− 1. In either
case, the dominating time complexity discussed in Table 2 remains the same.
In the worst case, it dominates time complexity of all lines. In the case of a
sparse graph, it either dominates or is equivalent to time complexity of other
lines. Hence, the time complexity stated in Theorem 2 holds.
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Line Number Line complexity Loop complexity Dominant complexity

1 O(m · logm) - O(m · logm)
2 O(m2n) - O(m2n)
3 O(1) - O(m2n)
4 O(1) - O(m2n)
5 - - O(m2n)

6 O(1) O(m) O(m2n)

7 O(m+ n) ▶ O(m2 +mn) O(m2n)
8 O(m2n2) [Table 3] ▶ O(m3n2) O(m3n2) = O(m7)
9 O(m4) [Table 4] ▶ O(m5) O(m3n2)
10 O(1) ▶ O(m) O(m3n2)
11 O(1) ▶ O(m) O(m3n2)
12 - - O(m3n2)
13 - - O(m3n2)
14 O(1) - O(m3n2)

Table 2: Line wise time complexity of Algorithm 1. A highlight denotes the
number of loop iterations. A pointer (▶) denotes that a line is within the loop.
Without loss of generality, we assume the average length of vertex names is a
constant and hence, ignore it in time complexity analysis of Line 1.

Line Number Line complexity Loop complexity Dominant complexity

1 O(1) - O(1)

2 O(1) O(m) O(m)

3 O(1) ▶ O(m2) O(m2)

4 O(n2) ▶ ▷ O(m2n2) O(m2n2)
5 O(1) ▶ ▷ O(m2) O(m2n2)
6 O(n2) ▶ ▷ O(m2n2) O(m2n2)
7 O(1) ▶ ▷ O(m2) O(m2n2)
8 O(n2) ▶ ▷ O(m2n2) O(m2n2)
9 O(1) ▶ ▷ O(m2) O(m2n2)
10 O(1) ▶ ▷ O(m2) O(m2n2)
11 O(n2) ▶ ▷ O(m2n2) O(m2n2)
12 - - O(m2n2)
13 O(m) ▶ ▷ O(m3) O(m2n2)
14 O(m+m2) ▶ ▷ O(m3 +m4) O(m2n2)
15 O(n) ▶ ▷ O(m2n) O(m2n2)
16 O(m) ▶ ▷ O(m3) O(m2n2)
17 - - O(m2n2)
18 - - O(m2n2)
19 O(1) - O(m2n2)

Table 3: Line wise time complexity of Algorithm 2. A highlight denotes the
number of loop iterations. A pointer (▶) denotes that a line is within a loop.
An additional pointer (▷) denotes a nested loop.
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Line Line Loop Dominant
Number complexity complexity complexity

1 O(1) - O(1)
2 O(m) - O(m)

3 O(1) O(m) O(m)

4 O(m2) ▶ O(m3) O(m3)
5 - - O(m3)
6 O(m3) [Table 5] ▶ O(m4) O(m4)
7 - - O(m4)
8 - - O(m4)
9 - - O(m4)

10 O(1) O(m) O(m4)

11 O(1) ▶ O(m) O(m4)
12 O(1) ▶ O(m) O(m4)
13 O(m) ▶ O(m2) O(m4)
14 O(m2) ▶ O(m3) O(m4)
15 O(m3) [Table 5] ▶ O(m4) O(m4)
16 - - O(m4)
17 - - O(m4)
18 - - O(m4)
19 - - O(m4)

20 O(1) O(m) O(m4)

21 O(1) ▶ O(m) O(m4)
22 O(1) ▶ O(m) O(m4)
23 O(1) ▶ O(m) O(m4)
24 O(m3) [Table 5] ▶ O(m4) O(m4)
25 O(1) ▶ O(m) O(m4)
26 - - O(m4)
27 O(m2) ▶ O(m3) O(m4)
28 O(m3) [Table 5] ▶ O(m4) O(m4)
29 O(m2) ▶ O(m3) O(m4)
30 O(m3) [Table 5] ▶ O(m4) O(m4)
31 O(1) ▶ O(m) O(m4)
32 O(m3) [Table 5] ▶ O(m4) O(m4)
33 - - O(m4)
34 - - O(m4)
35 - - O(m4)
36 O(1) - O(m4)

Table 4: Line wise time complexity of Algorithm 3. A highlight denotes the
number of loop iterations. A pointer (▶) denotes that a line is within a loop.
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Line Line Loop Dominant
Number complexity complexity complexity

1 O(m+m) - O(m)
2 O(m) - O(m)
3 O(1) - O(m)
4 O(m2) - O(m2)
5 O(m+m) - O(m2)

6 O(m2) O(m) O(m2)

7 O(m2) ▶O(m3) O(m3)
8 - - O(m3)

9 O(m2) O(m) O(m3)

10 O(m2) ▶O(m3) O(m3)
11 - - O(m3)
12 O(1) - O(m3)

Table 5: Line wise time complexity of Algorithm 4. A highlight denotes the
number of loop iterations. A pointer (▶) denotes that a line is within a loop.

7 Conclusion

We show that the VC problem can be solved efficiently. It implies that DiRe
committees can be computed efficiently. Hence, achieving diversity and repre-
sentation is more efficient than initially expected. Also, indeed, P = NP.

Broader Impact: We do not expect major, immediate, positive or negative,
practical implications of this work. It is primarily because extrapolating our
algorithm to elections where candidates are divided into arbitrarily sized ar-
bitrary groups itself seems non-trivial (a.k.a. extrapolating our algorithm to
hypergraphs itself seems non-trivial).
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A Implementation of Algorithm

We give an example to explain the implementation of the entire algorithm. Ad-
ditional examples can be found here and here (link will open to Google Slides).

Example 2. Consider the graph G shown in Figure 1. An instance of the VC
problem consists of the graph G and an integer k = 4. The algorithm traverses
through the graph as depicted from Figure 2 to Figure 25. The algorithm returns
“YES” as the minimum size vertex cover shown in Figure 25 is of size 4.
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Figure 1: Example Graph G.
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Maximum Matching

Figure 2: Bold edges {(0, 1), (2, 7), (3, 5), (4, 6)} form a maximum matching
of graph G.
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0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Figure 3: The “BFS” table lists the vertices at each level of the BFS (seeded
on vertex ‘0’).
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5

42

3
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7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 1 

Figure 4: “Maximal Matching” table lists vertices 0 and 1 (orange vertices in
graph G), which are the endpoints of the first edge selected during maximal
matching. Each endpoint is marked as visited (orange font; BFS table).
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1

5

42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

Figure 5: For each of the endpoints, namely 0 and 1, the respective curly brack-
ets ({}) enlists the vertices connected to the corresponding vertex. Here, 0 is
connected to {1} and 1 is connected to {0, 2, 3}. In graph G, the grayed out
edges represent the removed edges.

1

5

42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

Figure 6: As all vertices on Level A of BFS table is visited, the pointer now is
on Level B.
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42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

Figure 7: As all vertices on Level B of BFS table is visited, the pointer now is
on Level C.

1

5

42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 7

Figure 8: Vertex 2 comes before vertex 3 when sorted lexicographically. Hence,
it is selected as one of the endpoints. As the edge connecting vertices 2 and
7 is part of maximum matching, it is preferred over edge connecting vertices 2
and 4. Hence, “Maximal Matching” table lists vertices 2 and 7, which are the
endpoints of the second edge selected during maximal matching. Each endpoint
is marked as visited (orange font; BFS table).
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42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

Figure 9: For each of the endpoints, namely 2 and 7, the respective curly brack-
ets ({}) enlists the vertices connected to the corresponding vertex via an un-
removed edge. Here, 2 is connected to {4, 7} and 7 is connected to {2}. The
corresponding edges are removed (grayed out).

1

5

42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 5

Figure 10: As the edge connecting vertices 3 and 5 is part of maximum match-
ing, it is preferred over edge connecting vertices 3 and 8. Hence, “Maximal
Matching” table lists vertices 3 and 5, which are the endpoints of the third edge
selected during maximal matching. Each endpoint is marked as visited (orange
font; BFS table).
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1

5

42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

Figure 11: For each of the endpoints, namely 3 and 5, the respective curly
brackets ({}) enlists the vertices connected to the corresponding vertex via an
unremoved edge. Here, 3 is connected to {5, 8} and 5 is connected to {3, 6}.
The corresponding edges are removed (grayed out).
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42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

Figure 12: Vertex 8, which now has no unremoved edges, is marked as visited
(orange font; BFS table). As all vertices on Level C of BFS table is visited, the
pointer now is on Level D.
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42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 6

Figure 13: The edge connecting vertices 4 and 6, which is part of maximum
matching, is the only remaining edge. Hence, “Maximal Matching” table lists
vertices 4 and 6, which are the endpoints of the fourth and final edge selected
during maximal matching. Each endpoint is marked as visited (orange font;
BFS table).
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42

3

6

7

8

0

BFS

Level Vertices

A 0

B 1

C 2, 3

D 4, 5, 7, 8

E 6

Maximal Matching

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 14: For each of the endpoints, namely 4 and 6, the respective curly
brackets ({}) enlists the vertices connected to the corresponding vertex via an
unremoved edge. Here, 4 is connected to {6} and 6 is connected to {4}. The
corresponding edge is removed (grayed out).
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Local Minimization

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 15: The “Maximal Matching” table will be used for “Local Minimization”
phase of the algorithm. Vertices {0, 1, 2, 3, 4, 5, 6, 7} are labeled as eponymous
“endpoint” vertices.

Local Minimization

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 16: Vertex 3 is frozen (highlighted yellow) as it represents vertex 8, which
is not an “endpoint” vertex. By default, the represents list of a frozen vertex
(here, vertex 3) is removed (not shown here for convenience).
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Local Minimization

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 17: Vertex 0 in row 1 is removed (grayed out) as it represents no other
vertex except its same-row neighbor (namely vertex 1). Consequently, vertex
1 in row 1 is frozen (highlighted yellow) as it now represents a removed vertex
(namely vertex 0).

Local Minimization

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 18: Vertex 7 in row 2 is removed (grayed out) as it represents no other
vertex except its same-row neighbor (namely vertex 2) and is not represented
by any vertex in rows above it. Consequently, vertex 2 in row 2 is frozen
(highlighted yellow) as it now represents a removed vertex (namely vertex 7).
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Local Minimization

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 19: The frozen vertices 1, 2, and 3 are removed (grayed out) from “rep-
resents” list (curly brackets) of each vertex, wherever applicable. Here, vertices
2 and 3 are removed from represents list of vertex 1 and vertex 3 is removed
from represents list of vertex 5.

Local Minimization

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 20: Arrow depicts the bottom-up elimination of vertices.

30



Local Minimization

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 21: Start with the last row. Given that both the vertices represent only
each other, we freeze one and remove the other. Specifically, vertex 4 is not
represented by any vertex (or equivalently it is represented by frozen vertex 2)
and vertex 6 is represented by non-frozen vertex 5. Hence, vertex 4 is removed
(grayed out) and vertex 6 is frozen (yellow highlight).

Local Minimization

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 22: The frozen vertex 6 is removed (grayed out) from “represents” list
of each vertex, wherever applicable. Here, it is removed from represents list of
vertex 5. Consequently, vertex 5 does not represent any vertex. Hence, it is also
removed (grayed out).
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Smallest Vertex Cover = {1, 2, 3, 6}

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 23: Only frozen vertices remain in the table. The local minimization
phase terminates. The frozen vertices form the smallest vertex cover for the
iteration of the algorithm whose BFS is seeded on vertex ‘0’.

Minimum Vertex Cover = {1, 2, 3, 6}

Node 1 Node 2

0 – {1} 1 – {0, 2, 3}

2 – {4, 7} 7 – {2}

3 – {5, 8} 5 – {3, 6}

4 – {6} 6 – {4}

Figure 24: The size of the smallest vertex cover (= 4) is equivalent to the size
of maximum matching. Hence, the smallest vertex cover is indeed the minimum
vertex cover and the algorithm terminates early.
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Minimum Vertex Cover = {1, 2, 3, 6}

Figure 25: Vertices {1, 2, 3, 6} form the minimum vertex cover of size 4.
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