On the Computational Complexity of the Vertex Cover
Problem on Cubic Bridgeless Graphs

Kunal Relia*
June 28, 2025

Abstract

In this two-part study on the vertex cover problem on cubic bridgeless graphs (VC — CBG),
we discover that: (i) VC — CBG is NP-complete and (ii) VC — CBG € P.

*This work was supported in part by Julia Stoyanovich’s NSF Grant No. 1916647 (while the author was a student
at NYU) and personal savings (that resulted from Julia’s grants). It builds upon some ideas presented in [Rel24].
Independent Researcher. Correspondence: kunal.relia91@gmail.com or krelia@nyu.edu.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Contents

[L_Introduction|

1.1 Vertex Cover and its Computational Aspects| . . . .

1.2 P L NP, Lower Bounds, Barriers, and the MVC| L.

1.3  Some Non-Computational Aspects of Grap eor
2N . [ Prelio o3

I VC — CBG is NP-complete)

13 Proof of NP-completeness of VC — CBG|

IT _VC—CBG € P

4 Algorithm Overview and Intermediate Results|

6 Proof of Correctness|

7 Time Complexity Analysis|

|8 Concluding Remarks|

4.1 Find a Perfect Matching| . . . . .. ... ... ... ..

[£:2 Populate Represents Tabld. . . . ... ... ... ..
A3 Diminishing Hops|. . . . . . . . .. ... ... ....
4.4 Summary|l . . . o. ... . e e

8.1 Additional Remarks|

|A Selection of Simple Connected Graphs|

O o W

10

11

12

19

21
22
23
29
41

41
45
49

53
54

59



28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Note: gemini.google.com and chat.com were used for stylistic purposes when drafting this paper
(specifically, simplifying at most —25¢*™ sentences we wrote). Grammarly was used for grammar.

1 Introduction

The P = NP question [Coo7Tl, [Lev73l [Kar72], directly and indirectly, is arguably one of the biggest
curiosities in computer science and mathematics. Informally, the question asks if every computa-
tional problem whose solution can be verified in polynomial time can also be solved in polynomial
time. Formally, the complexity class P consists of computational problems whose solution can be
computed in time polynomial in the size of input, which is considered “efﬁcient”ﬂ Alternatively,
the problems in P are a set of all languages that can be decided by a deterministic Turing Machine
[Tur36l, Tur38] in polynomial time. On the other hand, the class NP consists of computational
problems that, when given a candidate solution, we can verify in time polynomial in the size of the
input whether the candidate solution is correct or not. Hence, the problems in NP are a set of
all languages that can be decided by a non-deterministic Turing Machine in polynomial time (or
that can only be verified by a deterministic Turing Machine in polynomial time). The question of

whether the problems in NP can be computed efficiently or not forms the basis of P L NP.

The P = NP question was formalized due to the Cook-Levin Theorem [Coo71l [Lev73]. Since
then, it has led to some remarkable work. An early example is by Karp who showed that twenty one
computational (combinatorial) problems were, indeed, NP-complete [Kar72], thus formally further
cementing what earlier scientists like Nash (in his 1955 letter to the National Security Agency)
and Godel (in his 1956 letter to von Neumann) already believed [Aarl6]. Interestingly, eleven
of the twenty-one Karp’s NP-complete problems are directly graph-based problems (and at least
one other problem is a graph-based problem indirectly; for example, the Job Sequencing problem
may be trivially formulated on a disjunctive graph). Furthermore, among these eleven graph-based
problems, one of the extensively studied is the vertex cover problem, the topic of our discussion.

1.1 Vertex Cover and its Computational Aspects

Given an unweighted undirected graph (specifically, a 2-uniform hypergraph)ﬂ7 the vertex cover of
the graph is a set of vertices that includes at least one endpoint of every edge of the graph. Formally,
given a graph G = (V, E) consisting of a set of vertices V' and a collection E of 2-element subsets of V'
called edges, the vertex cover of the graph G is a subset of vertices S C V' that includes at least one
endpoint of every edge of the graph, i.e., for all e € E, eNS # (). The corresponding computational
problem of finding the minimum-size vertex cover (MVC) is NP—completeE| (Node Cover, Problem
5 in [Kar72]). However, the hardness meant that there is no known unconditional deterministic
polynomial-time algorithm to solve MVC unless P = NP. Hence, a rich line of research ensued that
improved our general understanding related to the complexity of the MVC problem, especially around
its (in)approximability and parameterized complexity.

Approximation Algorithm and Inapproximability: A natural relaxation to counter the hard-
ness of any problem is to find an approximate solution that can be computed efficiently. For the
MVC, a trivial 2-approximation algorithm computes a vertex cover of size at most twice the minimum
size vertex cover in polynomial time. The algorithm picks an arbitrary edge e = (u,v) € E, adds
both the vertices u and v to the vertex cover S, removes all edges connected to either of the two
vertices (u and v), and repeats until no edge remains. Additionally, complex techniques like linear
programming-based algorithms also obtain an approximation ratio of 2 [ABLT06]. However, it is not
known whether an approximation algorithm with a strictly better approximation ratio exists or not.
This is among the major open problems within the Theoretical Computer Science (TCS) commu-
nity. A path towards understanding this was explored by Hastad who, following the PCP theorem
[FGL™96, [AS98, [ALM™98! [Din(7], used a 3-bit PCP to show that it is NP-hard to approximate MVC
within a factor of 1.1667 — ¢ [Hés()l]lﬂ Dinur and Safra went beyond this factor to 1.3606 — ¢ [DS05].

IThe first association between efficiency, polynomial-time computability, and the complexity class P may be
attributed to the Cobham-Edmonds thesis [Cob65, [Edm65].

2For the remainder of the paper, a graph refers to an unweighted undirected finite graph. Furthermore, without loss
of generality (w.l.o.g.), we assume the graph is simple (no loops and no multiple edges) and connected (Appendix [A]).

3Strictly speaking, the decision version (VC) of the minimum-size vertex cover problem is NP-complete whereas the
MVC itself (search version) is NP-hard. See Section 2.1 of [Khol9] for a lucid explanation delineating (a) search and
decision problems and (b) NP-hardness and NP-completeness. Until formalized, we use MVC and VC interchangeably.

4¢ denotes an arbitrarily small constant such that € > 0 and the results are meant to hold for every such e.



75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

o4

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

Khot, Minzer, and Safra further improved the bound to 1.4142 — ¢ (as an implication of proving
the 2-to-2 Games Conjecture) [KMS23]. Independently, assuming Khot’s Unique Games Conjecture
(UGC) [Kho02], we know that the MVC problem may be hard to approximate within a factor of 2 —
IKRO8], thus matching the bound of the known trivial 2-approximation algorithm. Khot and Regev
actually gave a generalization of this result: assuming the UGC, the MVC on k-uniform hypergraphs
may be hard to approximate within k —e for all integers k > 2. Without assuming the UGC, the MVC
on k-uniform hypergraphs is hard to approximate within k — 1 — ¢ for all integers k& > 3 [DGKRO03].

Parameterized Complexity: Another relaxation to overcome the worst-case intractability of the
MVC is to assume the size of certain parameters. For instance, if we assume that the size of the vertex
cover is small, then there are known algorithms that run in time polynomial in the size of the input
(i.e., number of edges and vertices). However, all such results are conditioned on the assumption of
the size of one or more parameters, including a new parameter called bridge-depth [BJS22]. Hence,
given our aim to provide unconditional results, we refer the readers to a comprehensive discussion
on the parameterized complexity [DF12] and, in particular, on the fixed-parameter tractability of
the MVC [DF95] and on the parameterized complexity of its variants [GNWOT].

A common denominator across the above-discussed computational aspects of the MVC is the miss-
ing (tangible and visible) effort to discover an unconditional deterministic polynomial-time (exact)
algorithm. To the best of our knowledge, no recorded work aims to either (i) significantly improve
the trivial 2-approximation algorithm unconditionally and deterministically or (ii) tame the expo-
nential component of a parameterized algorithm. Additionally, there are no advances in efficiently
solving the MVC via parallel computing or under quantum complexity (else the relationship between
complexity classes BQP (or EQP) and NP would be known).

Tractability under Restricted Graphs: The MVC becomes tractable under various restricted
scenarios. For example, the MVC is in P when the graph is restricted to (i) a tree, (ii) bipartite
(Kénig’s theorem [Kon3l]), or (iii) claw-free (because the maximum independent set problem on
claw-free graphs is in P [Shi80l [Min80]). However, no such study aims to discover an unconditional
deterministic polynomial-time (exact) algorithm for an NP-complete variant of the MVC.

In summary, there is neither a study to significantly improve the 2-approximation algorithm for
the MVC nor a study on an algorithm for a restricted setting of the MVC that is NP- complete

Consequently, we shift our discussion to understanding how the research on resolving the P = NP
question relates to the MVC. This is important especially because all NP-complete problems are
“equivalent” in a certain technical sense. In particular, we assess if existing research either prohibits
or limits the discovery of an algorithm for an NP-complete variant of the MVC.

1.2 P NP, Lower Bounds, Barriers, and the MVC

The P = NP question has arguably attracted unparalleled research in the number of approaches
to solving it. On the surface, there are three possible outcomes: (i) P = NP, (ii) P # NP, or (iii)

P £ NP is unsolvable or undecidable. On zooming in, each outcome, especially the first two, is
associated with multiple approaches. The third outcome has not received particular attention.

To prove P = NP using a constructive proof, we can either (a) discover a polynomial-time
algorithm for an NP-complete problem or (b) prove that a problem in P is NP-complete. While
the technique used for both approaches may be the same, the problem space being targeted is
different. A constructive proof for P = NP, especially an algorithm with a lower order polynomial
time complexity, would fundamentally reshape how we study complexity theory, as not only will
all “hard” problems be in P, but there will be an algorithm to solve them all! A non-constructive
proof for P = NP may not have similar major practical consequences. On the other hand, the aim
to prove P # NP, which is widely believed to be the case and would imply that the problems in
NP cannot be computed efficiently, has led to multiple important breakthroughs in how and more
importantly, how not to approach a proof for P # NP.

Arguments Against a Proof of P # NP: There is an amazing breadth and depth of research
focused towards proving P # NP. Yet, each major approach, ranging from the earlier logic-based
techniques to the most recent Geometric Complexity Theory, has either hit at least one of the
barriers in complexity theory or been stagnated. We discuss some of these approaches as arguments
against a proof of P # NP and then provide an overview of its relevance to the MVC.



129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

Approaches that Hit a Barrier: We enlist approaches that were negated by one of the three barriers
in complexity theory, namely, relativization [BGS75], natural proofs [RR94], or algebrization [AW09].

e Logical Techniques: Initial research in TCS that aimed at separating the classes P and NP
used techniques borrowed from logic and computability theory, especially previously successful
techniques that were used for separation results. One such strong candidate was the diagno-
lization technique. However, Baker, Gill, and Solovay [BGS75] showed that these techniques

that relativize cannot be used to solve the P = NP question. This is because a relativizing
proof for P # NP would mean that there exists another “relativized world” where P and
NP Turing machines can compute a problem in polynomial time, even in a single time stamp.
Hence, there are relativized worlds where P = NP, and other relativized worlds where P #

NP. Therefore, any solution to the P Z NP problem will require non-relativizing techniques.

e Proof Complexity and Circuit Lower Bounds: The need for a non-relativizing approach
led the researchers to turn to proof complexity and circuit complexity. The proof complexity
approach would lead to counterintuitive results such that, with some additional work, one
could prove P # NP, and even NP # coNP. This is because the resolution technique
(and its enhancements) in proof complexity discuss exponential lower bounds on the sizes of
unsatisfiability proofs but not for arbitrary proof systems. Consequently, if one could prove
super-polynomial lower bounds for arbitrary proof systems, the above-mentioned counterintu-
itive result would hold. Hence, researchers shifted the focus to circuit lower bounds.

One of the exciting circuit lower bound approaches was the monotone circuit lower bounds
program due to an exponential lower bound for the clique problenﬂ by a then-graduate stu-
dent Razborov [Raz85ba]. However, this hit a wall when an exponential lower bound for the
matching problerrﬁ was discovered by Razborov [Raz85b]. Thus, a discussion on monotone
circuit lower bounds was actually a discussion on the weakness of monotone circuits and not
on the “hardness” of NP-complete problems.

Despite such limitations, the circuit lower bound program continued to be promising. It used a
novel but intuitive approach where, in addition to restricting the number of gates (as done with
the monotone circuits), the “depth” of the circuits was restricted, i.e., the number of layers of
gates between input and output was restricted. Hence, such small-depth circuits, coupled with
combinatorial techniques like the polynomial method and random restriction, were examined.
However, this entire approach hit a new barrier, namely, the natural proofs barrier [RR94].
Specifically, a natural proof would show that the very problems that were proven hard had an
efficient algorithm.

e Arithmetization (+ Logic): Given the existence of the relativization and natural proofs
barriers, researchers turned their attention to an approach called arithmetization.

Specifically, we know that diagonalization relativizes but circumvents natural proofs. On the
other hand, techniques using circuit complexity hit the natural proof barrier. Hence, there was
a need to circumvent both of these barriers. This was the reason for the use of arithmetization,
a technique that promoted the basic logical gates to polynomials and arithmetic operations.
Thus, the technique (i) enabled the use of properties like error-correcting that were not usable
for the Boolean case and (ii) also did not relativize. Hence, the mixture of the non-relativizing
arithmetization with non-naturalizing diagonalization seemed to be a good approach. However,
Aaronson and Wigderson [AWQ9] showed the existence of a new barrier: algebraic relativization
(algebrization). This barrier depicted that all known arithmetization-based results that do not
relativize, algebrize! Simultaneously, they showed that it is imperative for a technique to not
algebrize for it to solve a host of basic complexity-related problems (see Section 1.2, second

set of bullet points in [AWQ9] for a list), which meant that a solution to the P Z NP question
also needs to be non-algebrizing.

The three barriers in complexity theory — relativization, natural proofs, and algebrization — have
shown that approaches based on diagonalization (and other logic methods), circuit lower bounds,

5Given a graph G, a clique is a subset of vertices W C V such that all vertices in the subset are adjacent to each
other (i.e., the subset forms a complete graph). The corresponding computational problem of finding the maximum
size cliques in a graph is the clique problem. The clique problem is NP-complete.

6Given a graph G, matching M is a subset of edges such that no vertex is incident to more than one edge
(Defintion @ The corresponding computational problem of finding the maximum size matching is the matching
problem. The matching problem is in P.



179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

and arithmetization cannot be used to prove that complexity classes P and NP are distinct. Hence,
the very existence of these barriers against a proof for a separation result is a strong argument
against P = NP. Moreover, an unconditional deterministic polynomial-time algorithm for an NP-
complete problem is not affected by these barriers, and a correct proof will hold without violating
or contradicting any existing theory! This acts as an argument in favor of P = NP.

On the flip side, these barriers also suggest that proving separation between the classes will
require significantly different approaches. A few approaches that circumvent each of these barriers
have been explored but are, to the best of our knowledge, currently stagnated:

“Stagnated” Approaches: We now enlist approaches that have made progress but are stagnated.

e Ironic Complexity Theory (ICT)El: The term “ironic” in the name is apt - the ICT program
aims to assess whether an efficient algorithm for one problem can be used to show that an
efficient algorithm cannot exist for another problem. Conversely, is it possible that proving
the non-existence of an efficient algorithm for one problem implies that an efficient algorithm
solves another problem? At a high level, the ICT program aims to discover algorithms to
prove lower bounds. However, theoretically, such surprising results depend on collapse(s) in
the Time Hierarchy Theorem. Previous examples of positive results involve understanding, say
time-space complexity tradeoffs [LV99], to discover surprising algorithms and collapses that
do occur to establish new lower bounds! While examples of such amazing results are there,
especially by Williams (e.g., [Will4]), the common denominator across all approaches is that
it will still require years of work.

e Arithmetic Complexity Theory (ACT): The ACT program, a generalization of the tra-
ditional Turing Machine and Boolean circuits using Boolean values, uses arithmetic circuits,
which consider computer programs that use some larger field of values, such as real or complex
numbers instead of Boolean. Then, the task here is to find the minimum number of operations
needed to compute some polynomial over the chosen field of values. To that end, the arith-

metic complexity world analog of the P Z NP question is the permanent versus determinant
question for an n x n matrixﬂ It is known that the determinant is computable in polynomial
time but the permanent is #P-complete [Val79b]. This led to a remarkable line of research
on the study of the lower bounds for arithmetic circuits concerning this question. However,
all approaches fell short of resolving the question, mainly the Valiant Conjecture. The reasons
include the absence of a technique that works for permanent but fails for determinant and a
technique that circumvents the arithmetic variant of the natural proof barrier, if there is one.

e Geometric Complexity Theory (GCT): The GCT program was a once-promising ap-
proach started by Mulmuley [Mul99] and forwarded along with Sohoni [MSO01l [MS08] and

othersH At a high level, it aims to resolve the P NP question via a resolution of Valiant’s
algebraic analog, the VP vs VNP conjecture [Val79a]. Importantly, GCT had the potential,
in part, because it overcame the three barriers. However, Panova recently discussed that the
study of Kronecker and plethysm coefficients has effectively stagnated the progress of the GCT
program [[P17, [BIP19, [DIP20]. In particular, for the GCT to progress, asymptotic represen-
tation theoretic multiplicities need to be studied, which can then be used to understand the
computational complexity lower bounds [Pan23]. In summary, the GCT program, as of 2025
and except for the gemeral approach of resolving the permanent versus determinant question
(borrowed from previous approaches), has almost stagnated and is not a strong contender to
separate the complexity classes P and NP in the near future.

The progress on the three promising approaches mentioned above has either stagnated or is a
long shot from a solution. Here, we include a discussion because they overcome the three barriers
in complexity theory and directly relate to our paper’s overall topic.

Finally, we acknowledge that none of the six arguments presented above rule out the possibility
of a new approach to proving P # NPH However, we stress that a constructive proof for P =
NP would support the present theory — specifically, explain the presence of barriers, the absence of
exponential lower bounds, and the lack of significant progress despite efforts in proving P # NP.

"We borrow the use of the term ironic complexity theory from Aaronson’s overview of the topic in Section 6.4 of
[Aar16] where he primarily discusses the work of Williams.

8The definitions of determinant and the permanent are the standard definitions used for any square n x n matrix.

9We refer the reader to [Mulll] for a formal overview of GCT and to [Mull2] for an informal one.

10We kindly refer the reader to [Coo03, [Wig06} [Aari6] for a detailed discussion on the importance and progress on

solving P NP question and to [Wig09) [For09} [Var10l [For21] for a relatively non-technical discussion.



230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

Relevance to the MVC: The research on proving P # NP is connected to the MVC in two ways:
(i) barriers in complexity theory do not prevent an algorithm for the MVC and (ii) given that all
NP-complete problems are “equivalent” in a certain technical sense, an exponential (or more gen-
erally, a super-polynomial) lower bound for one of the them (or for any analogous lower bound
programs) would imply that the MVC cannot be solved efficiently. However, no such lower bounds
are known. In the other direction, our proof of P = NP wouldn’t be a total disaster for lower
bounds research, too. This is because our result would adhere to the known theories in that it will
provide a polynomial upper bound to the lower bounds instead of the current exponential upper
bound. Also, while there are such indirect implications, none of the studies, to the best of our knowl-
edge, provide insight to directly improve our understanding of the vertex cover problem in any wayE

In summary, given the state of research, we do not have a technical reason (“barrier”) that would
prohibit (“lower bound”) us from having a polynomial-time algorithm to solve an NP-complete
problem, namely the MVC, let alone the VC — CBG. On the contrary, an algorithm for the VC — CBG
would validate our arguments and explain many current theories in computational complexity liter-
ature! Hence, we now shift our discussion to some non-computational aspects of graph theory with
a focus on the research relevant to vertex covers and, specifically, on research that facilitates the
discovery of an algorithm for an NP-complete variant of the MVC in Part [[T] of the paper.

1.3 Some Non-Computational Aspects of Graph Theory

Since Euler (formally) introduced graphs to solve the Konigsberg Bridge problewﬁ in 1736 [Eul36],
the field of Graph Theory has evolved and found applications in various areas, including computer
science, medicine, and social science. Here, we discuss aspects of graph theory relevant to this paper.

Matching Theory: A matching M of a graph G is a set of edges such that no two edges in M
share a common vertex. Three variants of matching have been studied extensively. (i) Maxzimal
Matching: A matching M is maximal if every edge in graph G has a non-empty intersection with
at least one edge in matching M. (ii) Maximum Matching: A matching M is maximum if M is
maximal and the size of M is the largest possible for the given graph. (iii) Perfect Matching: A
matching M is perfect if every vertex v of the graph G is incident to an edge of the matching.

Existence of a Matching: FEach graph has at least one maximal matching and one maximum match-
ing (by definition). However, no such trivial guarantee is known for the existence of a perfect match-
ing in a given graph, except for the trivial observation that no graph with an odd number of vertices
has a perfect matching. Hence, the existence of a perfect matching in a given graph has been studied
extensively. Here, we discuss a few relevant seminal papers on the existence of a perfect matching.

One of the first papers on perfect matching was by Petersen, who, in 1891, showed that every
cubic (also called 3-regular or trivalent) bridgeless (also called isthmus-free or having no cutedge
or 2-edge-connected) graph has at least one perfect matching (also called a 1-factor) [Pet91]. A
relaxation to the bridgeless condition is known where every cubic graph with at most 2 bridges
has at least one perfect matching. Next, Hall gave a characterization of the existence of a perfect
matching in bipartite graphs (Hall’s Marriage Theorem) [Hal35]. A generalization of these results is
due to Tutte who characterized arbitrary graphs that do not have a perfect matching [Tut47]. This
is further generalized by the Tutte-Berge formula to include infinite graphs.

11We stress that we are aware of some of the results that shed light on some of the NP-complete problems. For
example, Williams showed that any algorithm for the MVC and other related problems like SAT and independent set
need at least n2os(7/7) ~ p1-8019 time to be solved if they use no@) space [BW15| [Will9]. Recently, it was shown
that any algorithm using n°(!) space cannot be solved in n?/ log,(n) time for some constant ¢ > 0 [Wil25]. However,
these results do not improve our understanding of the vertex cover problem per se, especially its graphical properties.
Interestingly, the above-stated result can be a meta argument within the ICT argument because the stagnancy of
the 2 cos(m/7) bound shows that no known technique can improve this number and hence, we have a long way to go
before proving L # NP, let alone PSPACE # P or P # NP.

Nonetheless, we note that the algorithm in Part [[I] adheres to these time-space bounds even when the algorithm is
for the restricted case where the graphs are cubic bridgeless graphs. Additionally, we suspect the time complexity for
the MVC on graphs may be a higher-order polynomial or have a huge constant. For instance, a preliminary analysis
shows that if the time complexity of an algorithm to solve the VC — CBG is O(poly(m,n)) where poly(m, n) is some (high
order) polynomial in the number of vertices (m) and the number of edges (n), say m® - n*, then the time complexity
of the algorithm to solve MVC on (i) 4-regular graphs would be O(68, 719,476,736 - poly(m,n)), (ii) 5-regular graphs
would be O(322, 687,697,779 - poly(m,n)), (iii) 6-regular graphs would be O(3.108710029642957 - 10%6 - poly(m,n)),
and so on. However, we leave this analysis for future work.

12The Konigsberg Bridge problem was to determine whether it was possible to walk through the city of Konigsberg
(now Kaliningrad, Russia), crossing each of its seven bridges exactly once. Euler proved it is impossible to do so.



271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Finding a Matching: The existence of maximum matching in every graph and the research on
the existence of perfect matching in a given graph resulted in two research foci: (i) counting the
number of matchings in a graph and (ii) attempts to find a matching, especially efficiently. For
instance, for cubic bridgeless graphs, it was conjectured [LP09] (Conjecture 8.1.8) that there are
exponentially many perfect matchings in every cubic bridgeless graph. This was proven [EKK™11]
through a series of incremental results that (a) gradually improved the lower bound for the general
case [EPL82l [KSS09, ESS+10, EK™12] and (b) proved the exponential bound for special graphs
[VooT9, [Oum09, [CS12]. Next, we discuss the research on finding a matching. In particular, in the
context of this paper, we discuss Berge’s Theorem [Ber57], which is at the heart of the Blossom
Algorithm [Edm65)] that finds a maximum matching in a graph.

Berge’s Theorem, stated in 1957, relies on the concepts of alternating paths and augmenting
paths in a graph G with respect to (w.r.t.) a given matching M. An alternating path in a graph
is a path (i) that starts from a vertex v that is not incident to any edge in M and (ii) whose
edges alternate between not being in M and being in M (or being in M and not being in M). An
augmenting path is an alternating path starting and ending on two distinct vertices that are not
incident to any edge in M. An augmenting path consists of an odd number of edges because the
number of edges in an augmenting path that is not in M is one more than the number of edges in
M. Using these concepts, Berge proved that given a matching M, M is a maximum matching if and
only if there is no augmenting path in the graph G w.r.t. matching M. Consequently, given any
matching M, one can find a maximum matching by using augmenting paths [Edm65].

Overall, we discussed some non-computational aspects of matching theory. We focused on un-
derstanding the existence of perfect matchings (particularly, Petersen’s Theorem) and on theories to
count and find matchings (particularly, Berge’s Theorem towards finding the maximum matching).

Graph Theory and Vertex Cover: We now assess the relation between the aforementioned
topics in graph theory and vertex cover. Specifically, we understand the relation between the maxi-
mum matching and the minimum vertex cover and explore our known understanding of the vertex
cover on cubic bridgeless graphs.

Matching and Vertex Cover: Matching of a graph and the vertex cover of a graph are closely re-
lated. Just like maximum matching, a minimum vertex cover always exists (by definition). Addi-
tionally, given an arbitrary graph, the size of the minimum vertex cover is at least the size of the
maximum matching. In case of the existence of a perfect matching, the size of the minimum vertex
cover is at least 7. If the graph is bipartite, then the size of the maximum matching is equal to
the size of the minimum vertex cover (Konig’s Theorem [Kon31]). However, despite such numeri-
cal relations between maximum matching and minimum vertex cover, there is no known structural
relation between the twﬂ Moreover, like Berge’s Theorem is to maximum matching, there is no
such analog to the minimum vertex cover.

Cubic Bridgeless Graphs and Vertex Cover: Regular graphs have been extensively studied from
computational (e.g., [AKS11l [Fei03]) and non-computational (e.g., see page 585 of [Wes01] for a list
of mentions of the words regular, 3-regular, and k-regular) perspectives. More specifically, for the
non-computational aspects, regular graphs and particularly 3-regular graphs have been well-studied
in the matching theory. Importantly, starting with Petersen’s paper [Pet91], cubic bridgeless graphs
have been a focus. However, no such study of vertex cover on cubic bridgeless graphs exists. Con-
sequently, no computational papers focus on the MVC on cubic bridgeless graphs.

In summary, we focused our discussion on the existence of matchings in graphs (especially perfect
matching in a cubic bridgeless graph) and the theories that help us count the number of matchings
and the (non-computational, graph-theoretic) results that are used to find a matching (especially
Berge’s Theorem for finding a maximum matching)E Next, in the context of vertex cover, we
observed that the otherwise well studied cubic bridgeless graphs are not studied for the vertex cover.
Additionally, there is no analog of Berge’s Theorem for the minimum vertex cover problem. Hence,
in this paper, we focus on understanding the non-computational aspects of the minimum vertex cover
in cubic bridgeless graphs. In turn, we study the complexity of the corresponding computational
problem of finding the minimum vertex cover in cubic bridgeless graphs.

13By structural relation, we mean the possibility of some relation between the pairs of endpoints of the edges in
perfect matching (or maximum matching) and the vertices in minimum vertex cover.

14For a curious reader, we refer them to some textbooks that discuss the amazing work done in graph theory
([BLWE6, [Gib85| [BMO8, [WesO1l [LP09)).



24 Section Summary: We summarize the key observations:

35 e Vertex Cover: There is an extremely exciting line of work to understand the computational
326 complexity of the minimum vertex cover problem (MVC), especially around its (in)approximability.
327 However, no work aims to either find an algorithm for an NP-complete variant of the MVC or
38 aims to significantly reduce the factor 2 approximation successfully. (Also, given that we dive
329 deep into the differences between the variants of the MVC, we omitted the discussion on the
330 research progress of every other NP-complete problem as it is beyond the scope of this paper,
331 even when all NP-complete problems are “equivalent” in a certain technical sensﬂ)

332 e P £ NP: The rich breadth and depth of research surrounding an answer for the P Z NP

333 question has resulted in (i) three barriers in complexity theory that do not allow easy separation
334 of complexity classes P and NP. Rather, a (constructive) proof for P = NP may explain
335 the existence of these barriers! (ii) The programs that explore the lower bounds and that also
336 overcome the barriers do not prohibit a polynomial-time for the MVC, let alone for the restricted
337 case of the MVC on cubic bridgeless graphs.

338 e Matching and Cubic Bridgeless Graphs: We studied some of the amazing non-computational
339 aspects of graph theory. Specifically, we learned that: (i) Every cubic bridgeless graph has
340 a perfect matching. (ii) Berge’s Theorem proves that a matching is maximum if and only if
3m there is no augmenting path w.r.t. the given matching. There is no analog of Berge’s Theorem
32 for the MVC. (iii) The vertex cover problem on cubic bridgeless graphs has not been studied.
33 These observations are essential for our paper, especially for the algorithm in Part [T, We partic-

sa  ularly stress the importance of the following three results for our subsequent discussion: Petersen’s
15 Theorem in [Pet91], Berge’s Theorem in [Ber57], and the Blossom Algorithm [Edm65]. We also
us assume a basic familiarity with standard algorithmic techniques. Finally, we make the following
a7 contribution using these observations:

us  Contribution: In this study on the vertex cover problem on cubic bridgeless graphs (VC — CBG),
s we prove that (i) VC — CBG is NP-complete (Theorem [I)) and (ii) VC — CBG € P (Theorem [2).

350 More specifically, we work on an understudied problem, the vertex cover problem on cubic
31 bridgeless graphs (VC — CBG). In Part [Il we show that VC — CBG is NP-complete by reducing from
32 a known NP-complete problem, namely, the vertex cover problem on cubic graphs [GJS74, [GJ02].
s Next, in Part [[I, we present the core contribution of the paper: an unconditional deterministic
34 polynomial-time algorithm for the VC — CBG, which is spread over three phases. Phase I leverages
35 the knowledge of the existence of a perfect matching in every cubic bridgeless graph [Pet91] to find
s a perfect matching for the given graph using the Blossom algorithm [Edm65]. Phase II uses the
ss7 perfect matching and a breadth-first search tree to create an augmented version of the (vanilla)
s 2-approximation algorithm for the vertex cover problem. This augmented algorithm populates a
o novel data structure called the “represents table”, which stores the information of each endpoint
w0 picked by the augmented algorithm and the neighbors of each endpoint. Phase I1I introduces a novel
s technique called the “diminishing hops”. The use of a diminishing hop to find a minimum vertex
32 cover is analogous to the use of an augmenting path to find a maximum matching [Ber57]. The
3 amalgamation of these three phases results in an algorithm for the VC — CBG. As mentioned earlier,
e our work conforms to the existing theories in computational complexity literature and provides
s a rationale for the existence of the known barriers in complexity theory. Additionally, our work
6 provides a constructive algorithm for VC — CBG by focusing on improving the understanding of the
7 graph theory-related aspects of VC — CBG.

xs Organization: In Section [2] we fix the notation used and define the computational problems
%0 being worked on. In Part [, we prove VC — CBG is NP-complete by showing that VC — CBG € NP
s and subsequently showing that VC — CBG is NP-hard by providing a polynomial-time reduction from
sn  a known NP-hard problem. In Part [[I, we present an unconditional deterministic polynomial-time
s2  algorithm for the VC — CBG, which implies VC — CBG € P. Each part begins with a brief introduction,
;i3 a theorem statement, and an overview of its sections.

15Given the massive problem space of NP-complete problems, we acknowledge the possibility that our work may
bear similarities to, say, some random, seemingly unrelated NP-complete problem’s approximation algorithm or its
hardness of approximation or an algorithm for its restricted case. However, to the best of our knowledge, no such
known similarity exists.



374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

403

404

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

2 Notation and Preliminaries

We kindly refer the reader to standard texts in theoretical computer science (TCS) for the definitions
of complexity classes P and NP and other definitions in complexity theory such as polynomial-time
reductions and NP-completeness. For example, for a lucid overview, please refer to Sections 2.1 and
2.2 in [Khol9], which is an interesting paper discussing foundational work leading to the proof of
the 2-to-2 Games Theory. For comprehensive definitions and discussion, please refer to a handbook
of TCS [VLII] or to some of the standard TCS textbooks [KT06, [GJ02, [CLRS22]. We treat these
standard definitions as done in the literature. Additionally, our algorithm treats a graph as a set
of vertices and a set of edges. Hence, throughout the paper, we perform standard set operations
on a given graph. Therefore, graph operations implicitly follow all standard set theory laws (e.g.,
associative, commutative, etc.). See Appendix B of [CLRS22| for details on set operations and laws.
We now define the computational problems related to finding the vertex cover of a given graph.
First, we define the search/optimization problem:

Definition 1 (Minimum Vertex Cover Problem (MVC)). Given a graph G, what is the smallest
non-negative integer k such that the graph G has a vertex cover S of size k?

Next, we restate the above as a decision problem and formalize the difference between the search
version and the decision version of the computational problem:

Definition 2 (Vertex Cover Problem (VC)). Given a graph G and a non-negative integer k, does
the graph G have a vertex cover S of size at most k?

Unless stated otherwise, we henceforth discuss solving VC (i.e., the decision version of the vertex
cover problem as stated in Definition , which is NP-complete. Next, to define the computational
problems corresponding to the variants of VC we use in the paper, we first define the graphs that
will be used.

Definition 3 (Cubic Graphs). A cubic graph, also called a 3-regqular graph or a trivalent graph,
refers to a graph in which each vertex has a degree of three.

Definition 4 (Bridgeless Graphs). A bridgeless graph, also known as a 2-edge-connected graph or
an isthmus-free graph or a graph with no cutedge, is a graph that does not contain an edge, called a
bridgﬂ whose deletion increases the number of connected components in the graph.

Consequently, a cubic bridgeless graph is a graph in which each vertex has a degree of three and
there are no bridges. Henceforth, graphs refer to arbitrary graphs. We specifically use the terms
cubic and bridgeless when necessary. Finally, we define the computational problems that use cubic
and bridgeless graphs, which is the focus of this paper.

Definition 5 (Vertex Cover Problem on Cubic Graphs (VC — CG)). Given a cubic graph G and a
non-negative integer k, does the cubic graph G have a vertex cover S of size at most k?

Definition 6 (Vertex Cover Problem on Cubic Bridgeless Graphs (VC — CBG)). Given a cubic bridge-
less graph G and a non-negative integer k, does the cubic bridgeless graph G have a verter cover S
of size at most k?

While VC — CG is known to be NP-complete [GJST4], the complexity of the VC — CBG is not
known. Finally, please note that we define other terminology used in this paper in situ.

What is an unconditional deterministic polynomial-time algorithm? Throughout the pa-
per, an algorithm refers to an exact algorithm unless noted otherwise. An unconditional algorithm
does not depend on any assumptions. A deterministic algorithm always produces the same output
for a given input. Finally, the number of operations of a polynomial-time algorithm is upper bounded
by a polynomial in the size of the input (denoted by O()). An example of an unconditional deter-
ministic polynomial-time algorithm is the AKS primality test algorithm that takes polynomial time
in the size of the input (number of bits to represent a number (logn)) to deterministically compute
whether a given number is prime or not without relying on any hypothesis/conjecture [AKS04].

161n other words, an edge is a bridge if and only if it is not contained in any cycle.

10



= Part I
= VC — CBG is NP-complete

11



443

444

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

462

463

464

465

466

In this part, we establish the NP-completeness of the vertex cover problem on cubic bridgeless graphs
(VC — CBG) by reducing from a known NP-complete problem, namely, the vertex cover problem on
cubic graphs (VC — CG).

The vertex cover problem on cubic graphs is trivially known to be NP-complete because the
vertex cover problem on graphs with vertex degree at most three is NP-complete [GJS74] (GJS74
calls vertex cover as node cover). However, the hardness of the VC on cubic bridgeless graphs does
not follow the hardness of the VC on cubic graphs. This is because the stipulation that the graph is
bridgeless introduces a restriction to the family of cubic graphs being considered. Such structural
restrictions are known to make the VC problem tractable. For example, the VC on claw-free graph@
is in P as a consequence of the maximum independent set problem on claw-free graphs being in
P [Shi80, [Min80] (we refer the reader to a survey on claw-free graphs for more details [FFRI7]).
Hence, restricting the cubic graphs to being bridgeless requires us to establish its computational
complexity. Furthermore, the reduction used to prove the hardness of the VC on graphs with vertex
degree at most three in Theorem 2.4|E| in [GJST4] does not necessarily consist of a bridgeless graph.
Thus, its reduction cannot be used to establish the hardness of the VC on cubic bridgeless graphs.

In summary, we need to establish the hardness of the VC on cubic bridgeless graphs because (i)
the stipulation of graphs being bridgeless introduces a restriction to the family of cubic graphs being
considered and such restrictions may make the problem tractable and (ii) the reduction used to prove
the hardness of the VC on graphs with vertex degree at most three consists of bridges. Therefore,
we prove the following theorem in Part [T}

Theorem 1. The vertex cover problem on cubic bridgeless graphs (VC — CBG) is NP-complete.

Part [I| Contribution and Organization: We show that VC — CBG is NP-complete (Section (3]).

3 Proof of NP-completeness of VC — CBG

For consistency, we restate the theorem we prove:

Theorem (1| restated). The vertex cover problem on cubic bridgeless graphs (VC — CBG) is NP-
complete.

Proof. The proof consists of two parts: (i) we show VC — CBG € NP and (ii) we show VC — CBG is
NP-hard by giving a polynomial time reduction from an instance of a known NP-hard problem,
namely, the vertex cover problem on cubic graphs (VC — CG), to an instance of the vertex cover
problem on cubic bridgeless graphs (VC — CBG). The latter is denoted by VC — CG <p VC — CBG.

VC — CBG € NP: Given a cubic bridgeless graph G = (V, E), a candidate solution consisting of
a set of vertices S C V, and a non-negative integer k, we can verify in polynomial time whether
vertices in candidate solution S form a vertex cover of size at most k or not.

VC — CG <p VC —CBG: We reduce an instance of the vertex cover problem on cubic graphs (VC — CG)
to an instance of the vertex cover problem on cubic bridgeless graphs (VC — CBG).

A. Construction. Given an instance of VC — CG counsisting of graph G = (V, E), we reduce it to
an instance of VC — CBG consisting of graph G’ = (V', E’) as follows:

Vertices: We have one vertex x; € X for each vertex v; € V and 6m + 10n dummy vertices d € D
where m corresponds to the number of vertices in the graph G and n corresponds to the number of
edges in the graph G. Specifically, we divide the dummy vertices into two types of blocks:

e Block type B; consists of n blocks and each block consists of ten vertices, namely, vertex
i€ B, Vie0,9].

e Block type By consists of m blocks and each block consists of six vertices. Specifically, for
each vertex u € G, we have vertices {u/,u” uf,ub, uf,u§} € Bs.

17A claw in a graph is a complete bipartite subgraph K1,3. A claw-free graph is a graph that does not have a claw
as an induced subgraph.

18Theorem 2.4 is Theorem 2.6 when referring to the journal version of the paper in Theoretical Computer Science,
Volume 1, Issue 3, February 1976, Pages 237-267.

12



467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

Hence, there are 10-n dummy vertices in blocks of type By and 6-m dummy vertices in blocks of
type Ba. Thus, |D| = 10n + 6m. Overall, we set X = {z1,...,2,,} and the dummy vertex set D =
{d1,...,dem+10n}. Hence, the vertex set V' = XUD is of size |[V'| = | X|+|D| = (m)+ (6m+10n) =
Tm + 10n vertices.

Vertex Cover Size: We set the target vertex cover size to be k + 3m + 6n.

Edges: Recall that (i) the target instance should form a cubic bridgeless graph and (ii) w.l.o.g.,
we have assumed the graphs being considered are simple connected, which means the given instance
of VC — CG contains no loops, no multiple edges, and no unconnected componentﬂ Therefore, to
get a bridgeless graph, we replace each edge e = (u,v) € E in graph G to ensure no bridges remain.
To do so, we first create a list L consisting of each edge and its endpoints e = (u,v) € E. Next,
consider a snapshot of the graph GG depicting an arbitrary edge e € FE connecting vertices v and v in
the given instance of VC — CG. The endpoints u and v are connected to the vertices {a,b,c,d} € V|
which are further connected to other vertices not depicted here or among themselves or both. We
are given a cubic graph, hence each snapshot centered on edge e looks as follows:

edge e

Figure 1: A snapshot of an instance of VC — CG centered on an edge e¢ € E.

Next, for each edge e = (u,v) € L connecting vertices v and v in graph G of the instance of
VC — CG, we perform the following “atomic” operationﬂ where we (i) split the edge e by connecting
it to a subgraph and (ii) split each endpoint u and v into three vertices each, as discussed below.
This ensures that the graph remains cubic while becoming bridgelesﬂ

e Splitting an Edge e: The edge e connecting the vertices u and v in an instance of VC — CG is
split and connected via a subgraph consisting of dummy vertices from Block type By (yellow
vertices) as depicted below:

- @006 :

N -

7 @ @ @ S~

Figure 2: Splitting the edge e from the instance of VC — CG by inserting a subgraph of dummy vertices
from Block type B; in the instance of VC — CBG. Each dashed line denotes the existence of an edge.

19W.l.o.g., we assumed that we use simple connected graphs. This assumption is rather trivial. If one aims to
overcome it, we can first prove that the VC on cubic simple graphs is NP-complete, which can then be used to prove
that VC — CBG is NP-complete. The former can be proved easily by removing each multiple edge and each loop and
adding an edge that is connected to a subgraph of five dummy vertices such that the graph remains cubic.

20Here, the term “atomic” operation is used from a mathematical perspective where it refers to an operation that
cannot be simplified or further broken down (in the context of this paper) and not from a computer science perspective
used in the context of concurrent programming.

211n principle, a reduction to prove the same result can be constructed such that this exercise of splitting an edge
and endpoints is done only for edges that are bridges. However, it entails (i) complications caused by the introduction
of a variable, say A, that counts the number of bridges in the given instance of graph G and (ii) needing a complex
proof that encovers all cases of an edge being surrounded by r bridges where r is an integer between 0 and 4 (both
inclusive) and in turn there being 5 cases encompassing (f) possibilities about which of the four edge is a bridge.
Therefore, we construct the discussed generalized reduction instance, which handles each edge, to simplify the proof.

13



488 e Splitting Endpoints of Edge e: Each endpoint u and v that is connected by the edge e
489 in an instance of VC — CG is split into three vertices each. We use dummy vertices from Block
490 type By (red vertices) and subsequently connect them as shown below:

Figure 3: Splitting endpoints u and v into three vertices each in VC — CBG. The two dashed lines in
the snapshot denote the existence of a Block Type B; subgraph depicted in Figure

201 e Updating the List L of Edges: Remove the edge e connecting the endpoints u and v from

102 the list L. Next, update the following edges in the list L:

203 — edge connecting endpoints a and u is replaced by an edge connecting endpoints a and u’
204 where the endpoint u’ is the newly created vertex from Block type By, which was created
405 by splitting the endpoint u

496 — edge connecting endpoints b and u is replaced by an edge connecting endpoints b and "’
a07 where the endpoint u” is the newly created vertex from Block type Bs, which was created
208 by splitting the endpoint u

499 — edge connecting endpoints ¢ and v is replaced by an edge connecting endpoints ¢ and v’
500 where the endpoint v’ is the newly created vertex from Block type B, which was created
501 by splitting the endpoint v

502 — edge connecting endpoints d and v is replaced by an edge connecting endpoints d and v”
503 where the endpoint v” is the newly created vertex from Block type Bs, which was created
504 by splitting the endpoint v

505 The list L is updated after every split of edge e and the split of the corresponding endpoints
506 that connect the edge e.

507 The above-discussed construction operations are “atomic” in that each edge e in the list L is split

ss  following the same procedure discussed above, and both its endpoints, independent of whether they
so0 are dummy vertices or not, are split following the same procedure discussed above. Each “atomic”
s0  operation transforms the given snapshot of VC — CG (Figure [1]) into the following snapshot of the
su  (sub-)graph of VC — CBG:

OROXOR0)
(O On0
OROROR)

Figure 4: A snapshot of an instance of VC — CBG corresponding to the snapshot of VC — CG (Figure.

14



512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

Finally, it remains to be discussed how a series of n “atomic” operations, one for each edge in
the instance of VC — CG, leads to the complete construction of an instance of VC — CBG. This implies
that a total of n edges are split. We also discuss the need for 10n + 6m dummy vertices. Next, we
show that there is no edge in the constructed instance of VC — CBG that is not a part of at least one
cycle. In turn, it implies the constructed instance of VC — CBG is bridgeless (and, of course, cubic):

e Number of “Atomic” Operations is n: The list L starts with n edges corresponding to
the n edges in the instance of VC — CG. Subsequently, after each “atomic” operation, the split
edge is removed from the list L. Hence, n “atomic” operations are carried out.

e Number of Dummy Vertices in Block Type Bj is 10n: This is trivial because when an
edge is split, the split edge is replaced by a graph consisting of 10 vertices (Figure . There
are n edge split operations, which result in 10n dummy vertices in Block type Bj.

e Number of Dummy Vertices in Block Type B; is 6m: Each vertex has a degree of
three. Hence, the operation of splitting of an endpoint occurs three times for each vertex.
More specifically:

Initially, each endpoint w is connected to three edges that will be split.

— Next, when the endpoint w is split (for the first time), the vertex u gets connected to
two dummy vertices v’ and u” (Figure [3). By design, the vertex u is now not connected
to any edge that will be split because (i) one of the edges it was connected to got split
and (ii) each of the remaining two edges that need to be split are now connected to the
dummy vertices v’ and u”, respectively.

— The dummy vertex v’ is connected to one edge that needs to be split. Hence, when that
edge is split, the endpoint v is split, and in turn, it is connected to two dummy vertices
u) and uf. By design, the dummy vertex «’ is now not connected to any edge that will
be split. Simultaneously, the two dummy vertices u} and u), are also not connected to
any edge that will be split.

— The dummy vertex u” is also connected to one edge that needs to be split. Hence, when
the edge is split, vertex u” is split and connected to two dummy vertices uf and uj, in
line with what was done for dummy vertex u’'.

— Opverall, each vertex w is split into 6 dummy vertices {u’, u”, u}, uy, uf,uf}. There are m
vertices in total, which results in 6m dummy vertices.

e Each Edge in the Constructed Instance of VC— CBG is a Part of At Least One
Cycle: During an “atomic” operation, when the two endpoints of an edge is split (Figure [3]),
the resultant dummy vertices are connected such that (i) they form a cycle and (ii) they form a
boundary around (a) the endpoints that were split and (b) the 10 dummy vertices from Block
type By that were inserted to split the edge. The combination of points (i) and (ii) ensures that
the edges connecting the endpoints that were split and the edges connecting the 10 dummy
vertices from Block type B; are also part of a cycle. Thus, an “atomic” operation guarantees
that each new edge is part of a cycle. Consequently, after n “atomic” operations, each edge
will be part of at least one cycle. The reason for this is mainly that there’s at least one edge
that belongs to the boundary resulting from one “atomic” operation and also to the boundary
resulting from another. This fact can be interpreted in two ways: (i) two cycles share at least
one edge in common or (ii) each “atomic” operation enlarges the boundary to encompass all
the newly inserted edges. In either case, it means that no edge is a bridge in the constructed
instance of VC — CBG. Therefore, the reduction ensures that the graph is bridgeless.

e Each Vertex in the Constructed Instance of VC — CBG has Degree Three: When a
vertex is split, the split vertex and the corresponding dummy vertices are connected to three
other vertices. When an edge is split, there are two dummy vertices in the subgraph of Block
type B; that are connected to the two endpoints of the split edge, and each of the remaining
eight dummy vertices is connected internally with three other vertices. Hence, trivially, each
vertex has a degree of three.

This completes our construction for the reduction, which is a polynomial time reduction in the
size of n and m.

We refer the reader to Figure[p, which depicts a snapshot of the constructed instance of VC — CBG
when each of the five edges depicted in the snapshot of the instance of VC — CG (Figure [1)) is split.
Specifically, it denotes execution of 5 “atomic” operations. We stress that the figure is a snapshot
of the reduction taking place; it is for illustrative purposes and depicts a stage of the reduction.

15



| @”‘t@ g"‘g |
(30 ()

Figure 5: A snapshot of an instance of VC — CBG that corresponds to an instance of VC — CG (Figure/l)).
The construction depicts the transformation of five edges (and corresponding six vertices) shown
in Figure [1} the edges that were not depicted are not transformed. Each dashed line denotes the
existence of an edge.

16



568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

B. Proof of Correctness.

Claim 1. We have a vertex cover S of size at most k that satisfies e S # O for all edges e € E if
and only if we have a vertex cover S’ of size at most k + 3m + 6n that satisfies €’ NS’ # O for all
edges ¢’ € E'.

(=) If the instance of the VC — CG problem is a yes instance, then the corresponding instance of
VC — CBG is a yes instance.

Six Vertices are Selected from each Block type B;: Consider any one block of ten candidates
from the n blocks of type Bi. The size of a minimum vertex cover for the subgraph consisting of
those ten vertices is six. Adding an edge and a vertex to the subgraph can only increase the size of
the minimum vertex cover. Hence, for each block in Block type Bi, we select six vertices, namely,
vertex numbers ending with 0,1,3,5,6, or 8, into the vertex cover S’ of the instance of VC — CBG.
This results in a total of 6n vertices in Vertex Cover S’ of the instance of VC — CBG.

Three Vertices are Selected from each of the m — k Blocks of type B; that Correspond
to m — k Vertices Not in Vertex Cover S of VC —CG: For each vertex u not in the vertex
cover S of an instance of VC — CG, we have three vertices in the vertex cover S’ of an instance of
VC — CBG. Specifically, for each vertex u ¢ S, we have vertex u and corresponding dummy vertices
v’ and u” in the vertex cover S’. We know that for each vertex u € G, we split it and have
{u, v, u” vy, uhy,uf,uf} € G'. These seven vertices form a linear chain. Additionally, the vertices u,
u’, and v are all connected to either a vertex ending with 0 or a vertex ending with 1 from one of
the corresponding blocks of Block type B;. This means that vertices u, u’, and v” may or may not
cover edges connecting them to vertices ending with 0 or vertices ending with 1 because the latter
two are already in the vertex cover S’. Finally, given that vertex u ¢ S, all three vertices connected
to vertex u in graph G will be in the vertex cover S. Hence, vertices u}, ub, v, and u} in graph G’
need not cover any edges that are not part of the linear chain (more on this in the next paragraph).
Therefore, we use the following proposition on the minimum vertex cover on a linear chain graph:

Fact 1. Given a linear chain graph G consisting of m vertices, the size of the minimum vertex cover

for the graph G is |5 ].

The seven vertices form a linear chain. Therefore, the minimum size vertex cover for the seven
vertices is of size three. We choose (central) vertices w, u’, and u” to form the minimum vertex
cover. Given that there are m — k vertices that are not in the vertex cover S, it corresponds to
3 - (m — k) vertices in the vertex cover S’. This results in an additional 3m — 3k vertices in Vertex
Cover S’ of the instance of VC — CBG.

Four Vertices are Selected from each of the k Blocks of type By that Correspond to k
Vertices in Vertex Cover S of VC — CG: For each vertex u in the vertex cover S of an instance
of VC — CG, we have four vertices in the vertex cover S’ of an instance of VC — CBG. Specifically, for
each vertex u € S, we have corresponding dummy vertices u}, ub, Y, and u§ in the vertex cover S’.

More specifically, if a vertex w is in the vertex cover S, then it covers all three edges connected
to it. We call the three vertices connected to the vertex u via these three edges as neighbors of
the vertex u. Additionally, we already discussed that corresponding vertices u, u’, and «” in the
graph G’ need not cover any edges (other than the edges on the linear chain) as they are connected
with vertices that are already in the vertex cover S’. Simultaneously, vertices v}, u5, v, and u5, in
addition to being connected to the vertices in the linear chain, are also connected to other dummy
vertices in graph G’ that correspond to the neighbors of the vertex u in graph G. Therefore, the
vertices u}, uh, uf, and w4 must be included in the vertex cover S’. This is required to cover the
edges linking these four vertices to the “dummy” vertices that correspond to the neighbors of vertex
u from the original graph G. This arrangement corresponds to (mirrors) how vertex w itself covers
all the edges to its neighbors in graph Giﬂ In turn, all the edges in the linear chain are also covered.

This results in the selection of 4 vertices in the vertex cover S’ for each of the k vertices in the
vertex cover S. Hence, there are 4k more vertices in the vertex cover S’ of the instance of VC — CBG.

Overall, for k vertices in the vertex cover S, we have 6n + 3(m — k) + 4k = 4k +3m — 3k +6n =
k + 3m + 6n vertices in the vertex cover S’. Hence, a yes instance of the VC — CG implies a yes
instance of the VC — CBG such that the vertex cover S’ is of size at most k + 3m + 6n.

22This is the same reason that vertices u, u}, u}, and u} in graph G’ need not cover any edges that is not part of
the linear chain when a vertex u is not in the vertex cover S.

17



620

621

6!

N

2

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

(«=) The instance of the VC — CBG is a yes instance when we have k 4+ 3m + 6n vertices in the
vertex cover S’. Then the corresponding instance of the VC — CG is a yes instance as well. More
specifically, we have the following cases when an instance of the VC — CBG is a yes instance. The
VC — CBG is a yes instance when the minimum vertex cover S’ contains:

1. Six dummy vertices from each Block type B;, Two dummy vertices from m — k

blocks of Block type Bs, Four dummy vertices from % blocks of Block type By, and
m — k vertices from set X: This is the trivial case. The total number of vertices in the
vertex cover S' = 6n+2(m—k)+4k+m—k = 6n+2m+m—2k+4k—k = 6n+3m-+k. Note
that this setup corresponds to the proof discussed in the forward direction. Hence, the m — k
vertices from the vertex set X that are in the vertex cover S’ denote the vertices in set V' of
graph G that are not in the vertex cover S. Consequently, the k vertices in the set X that are
not in the vertex cover S’ denote the vertices that are in the vertex cover S. In summary, the
corresponding instance of the VC — CG is a yes instance because the k vertices s € S that form
the vertex cover correspond to the k vertices in the set of vertices X \ (S’ N X).

. Six dummy vertices from each Block type B; and k + 3m vertices from Block

Type B> and set X: The contribution of six dummy vertices from each Block type B is
straightforward and non-consequential in the context of this case. Nonetheless, we can easily
modify the six vertices selected to include vertices ending with 0 and vertices ending with 1 in
the vertex cover S’.

Here, we focus our discussion on the selection of k 4+ 3m vertices from Block Type By and set
X. There are multiple ways to select the k 4+ 3m vertices that form a minimum vertex cover
(in conjunction with the dummy vertices from B;). However, among all such vertex covers,
there is at least one vertex cover that is the same as Case 1, namely, has two dummy vertices
from m — k blocks of Block type Bs, four dummy vertices from k blocks of Block type Bs,
and m — k vertices from set X. The reason relies on a property of a linear chain, especially
of even size: we can have multiple minimum vertex covers depending on which vertices are
selected. In particular, one of the vertices on the end of the linear chain can be replaced with
its neighbor without affecting the size of the minimum vertex cover. Similarly, in our case,
for each vertex u € V, the corresponding vertices {u, ', u”, v}, uy, v}, ui} € V' form a linear
chain, which allows manipulation of vertices selected in the vertex cover, even when the linear
chain for us is of odd size. We discuss two points in this case:

(a) three vertices from the linear chain are in the vertex cover S’: In the case of a
linear chain of size seven (odd), the minimum vertex cover is of size three, and neither of
the vertices at the end of the linear chain can be in the minimum vertex cover. There are
m — k such linear chains where three vertices are in the minimum vertex cover S’. The
m — k vertices not in the minimum vertex cover S correspond to these linear chains.

(b) four vertices from the linear chain are in the vertex cover S’: When four vertices
from a linear chain are in the minimum vertex cover S’, it implies that at least one of the
vertices is included to cover an edge that is not in the linear chain. W.l.o.g., let us begin
with an assumption that the vertices {u, ', uy,u}} (one vertex from the set X and three
vertices from the Block type Bs) are a subset of vertices that is in the vertex cover S’.
Then, these vertices can be replaced by the vertices {u},u), uy,us} (four vertices from
Block type Bs) in the vertex cover S’ because the vertices ending with 0 and vertices
ending with 1 from Block type Bj is in the vertex cover S’ and the corresponding edges
need not be covered by vertices in the linear chain. In general, when four vertices from
the vertex set {u, v/, u” uy, uh, vy, uy} € V' are in the minimum vertex cover S’, then any
such combination of the four vertices can be replaced by vertices {uf,ub,uy,uy} (four
vertices from Block type By). The instance of VC — CBG remains a yes instance with this
modification. There are k such linear chains having four vertices in the minimum vertex
cover S’. The k vertices in the minimum vertex cover S correspond to these linear chains.

Overall, there are the 3(m — k) + 4k = k + 3m vertices from Block Type By and set X. In
general, Case 2(b) shows that there is at least one minimum vertex cover S’ of size k+3m+6n
that is the same as Case 1. Therefore, a yes instance of the VC — CBG corresponds to a yes
instance of the VC — CG because the k£ vertices s € S that form the minimum vertex cover
correspond to the k vertices in the set of vertices X \ (S’ N X).

These cases complete the other direction of the proof of correctness. In turn, it completes the overall
proof that shows VC — CBG is NP-complete. O

18



« Part II
. VC—CBG € P

19



679

680

681

682

683

684

686

687

688

689

690

691

692

693

694

696

697

698

699

700

702

703

704

705

706

707

708

709

710

712

713

715

716

717

718

719

720

722

723

725

726

727

728

In this part, we discover an unconditional deterministic polynomial-time exact algorithm for the
vertex cover problem on cubic bridgeless graphs (VC — CBG). The lack of an algorithm, and more
generally, research on the VC — CBG is both — quite surprising and unsurprising.

(Relative) Lack of Research on the VC — CBG is Surprising: The matching theory within
graph theory has received much attention. In particular, properties of a perfect matching and a
maximum matching in a given graph have been studied extensively. Furthermore, matching in cubic
bridgeless is also well-studied (see subsection . However, no analogous work that extensively
discusses properties of the vertex COVGIE and in particular, properties of the vertex cover on cubic
bridgeless graphs is known. This is surprising because there is a known relationship between the
sizes of a maximum matching and a minimum vertex cover for a given graph (Lemma [1)). Hence, it
is intuitive to explore the existence of a deeper relation between the two. Additionally, a minimum
vertex cover always exists (by definition), just like a maximum matching. Hence, an analog to Berge’s
Theorem [Ber57], which relates augmenting paths and maximum matching, should be explored.
Overall, the Blossom Algorithm [Edm65] was preceded by rich graph-theoretic work on maximum
matching, perfect matching, and factorization. This facilitated a proof to show that the correspond-
ing computational problem of finding a maximum matching is in P even when the problem then
seemed to be similar to other typical graph optimization problems that later turned out to be “hard”.
Analogously, there is a need for us to better understand certain properties of the vertex cover.

No Algorithm for VC — CBG is Unsurprising: While the lack of focus on understanding the
properties of vertex cover, analogous to, say, Berge’s Theorem for maximum matching, is surprising,
the lack of an algorithm for the VC and VC — CBG is unsurprising. Karp’s landmark paper on the
twenty-one NP-complete problems brought the vertex cover problem (VC) to the attention of TCS
researchers [Kar72]. Consequently, given that VC was proven to be NP-complete, understanding its
hardness-related computational aspects has been a focus of TCS researchers (see subsection
Additionally, one of the natural approaches to discover an algorithm for an NP-complete problem
(and prove P = NP) directly relies on finding a polynomial-size Linear Programming or Semidefinite
Programming that projects onto the polytope whose extreme points are the valid solutions. This
approach was ruled out through a series of results [Yan88| [FMP ™15, [LRST5] [CLRS16] [Rot1T, 0224].
Hence, no effort on this front to find an algorithm for an NP-complete problem is unsurprising.

Next, we strengthen our unsurprising position about a lack of an algorithm for the VC — CBG, even
when certain restrictions on graphs, such as bipartite and claw-free, make the VC tractable. On the
other hand, other restrictions on graphs, such as planar, do not affect the hardness of the VC. Hence,
the surprisingly lack of understanding about the behavior of the vertex cover on bridgeless graphs,
unsurprisingly, prohibits us from putting VC — CBG in either camps (let us momentarily turn blind
for this paragraph to the fact that we just proved VC — CBG is NP-complete (Theorem [1])). Neither
do we know how the VC behaves on bridgeless graphs, nor have the bridgeless graphs been studied
on the other ten graph-based Karp’s NP-complete problems. Moreover, even when we did not know
much about the existence of a perfect matching in cubic graphs, Petersen showed that every cubic
bridgeless graph has a perfect matching [Pet91]. Hence, just like the bridgelessness restriction on
cubic graphs “easily” improved our understanding of the existence of a perfect matching, we aim to
assess whether the bridgeless condition is conducive to our understanding of the vertex cover.

Overall, the absence of an algorithm for the VC — CBG is unsurprising because: (i) VC was proven
NP-complete early and subsequent research focused on its hardness. (ii) VC — CBG lacks the tools
like those that helped prove maximum matching is in P and uses the understudied bridgeless graphs.

In summary, a lack of understanding of the non-computational aspects of the vertex cover (on
cubic bridgeless graphs) is surprising. Simultaneously, the rich understanding of the computational
aspects of the VC and an absence of an algorithm to solve the VC is unsurprising! As a result, we first
improve our graph-theoretic understanding of the vertex cover on cubic bridgeless graphs. Then,
we improve our understanding of the algorithmic aspects of the VC — CBG (and VC)@ We use the
Petersen Graph (Figure @ as a running example to facilitate our discussion henceforth.

23For the purposes of this discussion, a “vertexr cover” (and its variants) refers to a discussion of graph-theoretic
properties of the vertex covers and a “VC” (and its variants) refers to a discussion of the computational properties.

24These circumstances are strong reasons to speculate that the focus on the vertex cover shifted from graph theory-
based results to computational complexity-based results.

25Recall that the VC on 2-regular graphs is in P and the VC on 3-regular graphs is NP-complete. Hence, the VC on
3-regular graphs is the closest known problem to a variant of the VC in P. Next, if we consider this imaginative problem
space between the VC on 2-regular graphs and the VC on 3-regular graphs, the restrictive case of cubic bridgeless lies
somewhere in between these two ends. Hence, we are working on an algorithm for an NP-complete variant of VC that
is closest to the variant in P in the most conceivable way possible.

20



729

730

731

732

734

735

736

737

738

739

740

741

743

744

745

746

747

748

749

750

751

752

753

754

755

Example 1. The Petersen Graph (Figure @, a famous cubic bridgeless graph, is used as the given
graph G throughout Part[Il.

Figure 6: Petersen Graph used for the running example.

We prove the following theorem in Part [T}

Theorem 2. The vertex cover problem on cubic bridgeless graphs (VC — CBG) is in P.
Part [[I] Contribution: We show that VC — CBG € P.

Part [[T) Organization: In Section [d] we provide an overview of the three phases of an uncon-
ditional deterministic polynomial-time algorithm for the VC — CBG. We also discuss new (graph-
theoretic) concepts and properties of the vertex cover on cubic bridgeless graphs that are needed
for designing the algorithm and subsequently proving its correctness. In Section [5] we state the
algorithm (which is abstracted into multiple algorithms for improved understanding). In Section |§|,
we provide the proof of correctness of the algorithm. In Section [7, we discuss the time complexity
of the algorithm by providing an upper bound on its running time as a polynomial function in the
size of the input. This is facilitated by a step-by-step time complexity analysis.

4 Algorithm Overview and Intermediate Results

We provide an overview of the algorithm. We also define, observe, and prove new concepts needed
to prove the correctness of the algorithm. The algorithm is divided into three phases (Figure :

e Phase I - Find a Perfect Matching: The vertices are sorted lexicographically. Then, the
Blossom Algorithm [Edm65] is used to find a maximum matching of the given graph. Given
that we use cubic bridgeless graphs, the maximum matching is a perfect matching [Pet91]|ﬂ

e Phase II - Populate a Novel Data Structure — Represents Table: A breadth-first search
(BFS) tree is constructed by seeding on the first vertex selected from a lexicographically sorted
list of vertices. Next, an augmented version of the maximal matching algorithm (folklore 2-
approximation algorithm for the vertex cover problem) is used to sequentially select edges that
are part of the perfect matching. The output of this exercise is used to populate a novel data
structure called the “Represents Table” (Table . Specifically, the data structure stores (i)
the endpoints of the edges picked by the maximal matching algorithm in a row and (ii) in the
same row, the neighboring vertices of the endpoints in a given iteration.

26The time complexity of the Blossom Algorithm is O(m?n). Some algorithms are known to (i) find maximum
matching faster than the Blossom Algorithm (for example, Micali and Vazirani’s O(y/m - n) algorithm [MV80]) and
(ii) specifically find a perfect matching in a cubic bridgeless graph faster than the Blossom Algorithm (for example,
algorithms ranging from O(mlog* m) [BBDLOT] to O(mlogm) [GW24]). However, the time complexity of the third
phase (Diminishing Hops) dominates the complexity of the Blossom Algorithm. Hence, using a faster algorithm
does not affect the overall time complexity of our algorithm. Moreover, the use of the Blossom Algorithm to find
a maximum matching, instead of a specific algorithm to find a perfect matching, facilitates future work that can
generalize our algorithm to other graphs.

21



756

758

759

760

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

Input Data
Cubic Bridgeless _ Fhasel Graph G
Graph G Find Perfect Matching Phasel ll
using Blossom Algorithm :
Integer k Perfect Matching M Populate Data Structure
“Represents Table”
(i) Create a BFS Tree
Output Phase lll N !
Y e nan . Data (ii) Run an Augmented Vers!on of
€S, if Min Vertex Do Diminishing Hops the 2-Approximation Algorithm
Cover S| <k after Assigning “Scores” and Represents Table R
No, Otherwise Removing Vertices

Figure 7: A schematic representation of the three phases of the algorithm, with the corresponding
input and output data for each phase clearly indicated.

e Phase III - Diminishing Hops: The “Represents Table” is used to find the minimum vertex
cover by: (i) assigning scores to each endpoint based on their “connectedness”, (ii) removing
the vertices with low scores and (iii) using a new technique called diminishing hops, analogous
to the use of augmenting paths in maximum matching (Berge’s Theorem [Ber57]).

We now discuss each of these three phases in detail.

4.1 Find a Perfect Matching

The first phase of the algorithm consists of the use of the Blossom Algorithm to find a maximum
matching of the given graph. The maximum matching, in our case, is a perfect matching.

Definition 7 (Matching). Given a graph G, a matching M is a subset of the edges E such that no
vertex v € V is incident to more than one edge in M.

Alternatively, we can say that given a graph G, no two edges in a matching M have a common
vertex. Consequently, a maximum matching is a matching with the highest cardinality.

Definition 8 (Maximum Matching). Given a graph G, a matching M is said to be mazimum if for
all other matchings M', |M| > |M’'|.

Equivalently, the size of the maximum matching M is the (co-)largest among all the matchings.
A maximum matching that matches all the vertices of the graph is a perfect matching (Figure .

Definition 9 (Perfect Matching). Given a graph G, a matching M is a perfect matching if each
vertex v € V is incident to exactly one edge e € M.

In the general case, while every perfect matching is a maximum matching, every maximum
matching may not be a perfect matching. However, in our case, every maximum matching found by
the Blossom Algorithm is a perfect matching because we use cubic bridgeless graphs.

Theorem 3 (Petersen’s Theorem [Pet91]). Every cubic bridgeless graph contains a perfect matching.

Figure 8: The bold edges of the Petersen Graph denote a perfect matching M.

22



778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

798

799

800

802

803

804

805

806

807

808

809

810

811

813

814

815

816

817

818

819

820

821

822

823

More generally, every cubic bridgeless graph contains exponentially many perfect matchings
[EKK™11]. This is one of the reasons that we shall lexicographically sort the vertices as the first
step of the algorithm. Sorting ensures that the Blossom Algorithm always returns the same matching
for the same input. Next, there is a known relationship between the size of the maximum matching
and the size of the minimum vertex cover:

Lemma 1. In a given graph G, if M is a mazimum matching and S is a minimum vertex cover,
then |S| > |M].

Lemma [I| means that the largest number of edges in a matching does not exceed the smallest
number of vertices in a cover. We use this fact to set a lower bound on the size of the minimum vertex

cover. More specifically, we terminate the algorithm early if the given integer k is less than |M|.
Moreover, given that the matching M is a perfect matching in our case, we know that |M| = %,
which in turn implies that |S| > %

In summary, in the Phase I of the algorithm, given a cubic bridgeless graph G and a list of
lexicographically sorted vertices Viot, we use the Blossom Algorithm to find and output a perfect
matching M of the given graph. We refer the reader to [Edm65] for the Blossom Algorithm. In
addition to the importance of Berge’s Theorem in the Blossom Algorithm (discussed later in sub-
section , we note that the Blossom Algorithm does some extra work to handle the messy odd

cycles, which, by transitivity, implies that our algorithm also handles the odd cycles.

4.2 Populate Represents Table

The second phase of the algorithm involves populating a novel data structure called the “Represents
Table”. Before populating the table, the algorithm stores the vertices at each level of a tree derived
using breadth-first search (BFS):

Definition 10 (Breadth-First Search). Given a graph G, a Breadth-first Search (BFS) algorithm
seeds on a root vertex v € V' and wvisits all vertices at the current depth level of one. Then, it visits
all the nodes at the next depth level. This is repeated until all vertices are visited.

While the BFS algorithm is canonically a search algorithm, we use it here to derive a tree. This
tree itself is not needed. We require the information about the level on which each vertex is in the
BES tree. It is needed for the next steps in the phase two of the algorithm.

Example 2. We are given the Petersen graph G (Figure @ and a seed verter 0 € V. Hence, the
BFS algorithm seeded on vertex 0 will return the following table regarding the level at which each
vertex is in the BFS tree:

Level ‘ Vertices
1 {0}
2 {1,4,5}
3 {2,3,6,7,8,9}

Table 1: The vertices of the Petersen graph at each level of the BFS tree seeded on vertex 0.

Next, this phase of the algorithm implements an augmented version of the 2-approximation
algorithm for the VC. The vanilla 2-approximation algorithm is equivalent to finding the maximal
matching of a given graph.

Definition 11 (Maximal Matching). Given a graph G, a matching M is said to be mazimal if for
all other matchings M', M ¢ M’.

In other words, a matching M is maximal if we cannot add any new edge e € E to the ex-
isting matching M. Next, recall that finding a maximal matching is equivalent to the vanilla
2-approximation algorithm, which guarantees a vertex cover of size at most twice the size of the
minimum vertex cover: the algorithm picks an arbitrary edge e = (u,v) € E, adds both the vertices
u and v to the vertex cover S, removes all edges connected to either of the two vertices (u and
v), and repeats until no edge remains. The vertex S is the resultant vertex cover. In this vanilla
version, the method in which the edges are picked is arbitrary from two perspectives: (i) the order
in which edges get picked is arbitrary, and (ii) consequently, which edge among the remaining edges
gets picked is arbitrary. These two perspectives may seem similar but are different as outlined in
the two steps discussed in the next paragraph.

23



824 We remove the above-mentioned arbitrariness in the edges that are picked. Specifically, during
e this phase, the edges are picked by following a two-step method:

826 e Step 1 - Order in which the edges get picked: We start with the seed vertex u on Level

827 1 of the BFS tree. Once an edge connected to this seed vertex is picked, the seed vertex and
828 the other endpoint of the picked edge are marked as matched. We then move to Level 2 of the
829 BFS tree. An edge connected to an unmatched vertex on level 2 is picked nextﬂ Once all
830 vertices on Level 2 are matched, we move to Level 3, and so on. More generally, the order in
831 which the edges get picked is by following the levels of the BFS tree.

832 e Step 2 - Which edge gets picked from a given order: Each vertex u at level [ is connected
833 to (at most) three other vertices via (at most) three edges. Hence, among the (at most) three
83 edges to choose from, an unpicked edge that is part of a given perfect matching M is picked.
835 Recall that a perfect matching matches all the vertices of the graph, which means that each
836 vertex is connected to exactly one edge in a given perfect matching M.

Figure 9: (a) Vertex 0 is on the Level 1 of the BFS tree. Hence, an edge in the perfect matching M
that is connected to the vertex 0 is picked. Therefore, the edge connecting vertices 0 and 1 is picked.
(b) All the edges connected to the two endpoints are removed. (c) Vertices 4 and 9 are the two
endpoints of the second edge picked. (d) All the edges connected to the two endpoints are removed.

sv  Example 3. We are given the Petersen graph G, a perfect matching M (Figure @, and the levels
s of a BFS tree seeded on vertex 0 (Table .

830 During the first iteration of the augmented 2-approximation algorithm, we start with vertex 0,
a0 because as per step 1, it is the seed vertex at level 1 in the BFS tree. Consequently, as per step 2,

27The tie regarding which vertex on the same level | gets picked first is broken using the lexicographical ordering of
the vertices such that a vertex at position ¢ in the ordering is preferred over a vertex at position j, for all non-negative
integers ¢ < j. Similarly, all ties henceforth are broken based on the lexicographical ordering of the vertices.

24



842

843

844

845

846

847

848

849

850

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

868

869

870

871

872

874

875

876

877

878

879

880

882

883

884

885

886

887

888

we choose the edge connecting vertex 0 and vertex 1 because that edge is in the perfect matching M
(Figure @a). We mark the two endpoints of the picked edge as matched and remove all edges that
connect the two endpoints (Figure[9p).

In the next iteration, we choose verter 4. This is because, as per step 1, it is the first vertex
among all the unmatched lexicographically sorted vertices on level 2 of the BFES tree (namely, we
choose vertex 4 from vertices 4 and 5). Next, as per step 2, we choose the edge connecting vertex 4
and vertex 9 because that edge is in the perfect matching M (Figure Bc} We mark the two endpoints
of the picked edge as matched and remove all edges that connect the two endpoints (Figure @d)

We repeat this exercise until all the edges in the perfect matching are picked and consequently,
no edge remains in the graph.

Note that the vanilla 2-approximation algorithm would have picked edges arbitrarily. Therefore,
even when a given graph has a perfect matching, the vanilla 2-approximation algorithm may pick
a set of edges that may not be a perfect matching. Hence, we augment the algorithm to ensure
that all the edges in a perfect matching are picked. We will discuss the reason for doing so in the
next section. However, our decision implies that the augmented 2-approximation algorithm always
selects all edges in a perfect matching, which implies that the resultant vertex cover consists of all
the vertices. Formally, this happens because of the combination of the following two known lemmas
(or more formally, lemmata):

Lemma 2. In a graph G, if a matching M is maximum, it implies that the matching M is also
maximal. The converse does not hold.

Note that due to Petersen’s Theorem (Theorem7 a perfect matching and a maximum matching
mean the same thing in the case of cubic bridgeless graphs.

Lemma 3. The endpoints of a mazximal matching form a vertex cover.

Overall, given that the augmented 2-approximation algorithm picks edges that are in a perfect
matching, we know that the edges form a maximal matching too. Hence, its endpoints, which
consist of all the vertices in the graph, form a vertex cover (trivially). Additionally, the augmented
2-approximation algorithm picks the edges in a particular order. This does not alter the above
discussion but is crucial in how the represents table gets populated and affects its properties.

Represents Table: We discuss the novel data structure called the “Represents Table”. It is an
augmented version of a table data structure and consists of unique properties and operations. Let
us first define the property that led to the name represents table. It is based on a concept where a
vertex u that is connected to a vertex v via an edge is said to represen@ the other vertex.

Definition 12 (Represents). Given a graph G, a vertex uw € V is said to represent a vertexv € V
when the vertex v is connected to the vertex u by an edge e € E. Conversely, the vertex v 1is
represented by the verter u.

Observe that when a vertex u represents a vertex v, it is an alternative way of saying that an
edge connects the vertices u and v. Additionally, given that we use a cubic (bridgeless) graph, each
vertex represents three vertices and each vertex is represented by three vertices. The list of vertices
that a vertex u represents is stored in a list called a Represents List.

Definition 13 (Represents List). Given a graph G, a vertex w € V is said to represent a set of
vertices V! C V' \ {u} if there exists an edge between the vertex u and every vertex in V'. These
vertices that the vertex u represents are in the represents list L, such that for all vertices u € V,

L, = LEJEe\{uHuee.

In the context of this paper, we can restate the above definition as follows: Given a cubic graph
G, a vertex u € V that is connected to three vertices x, y, and z by an edge each is said to represent
the vertices z, y, and z. These vertices that vertex u represents are in the represents list L, such
that L, = {z,y,z}. The size of each represents list in this paper is at most three (because we use
cubic graphs). We are now ready to define the represents table:

28Informally, the term is inspired by a type of committee election where each voter approves of 2 candidates and
the aim is to elect the smallest committee that represents every voter such that at least one of every voter’s approved
candidate is in the committee. In our context, we want to select the smallest set of vertices that covers (represents)
each edge. Hence, think of vertices as candidates and edges as voters.

25



889

890

891

892

893

894

895

896

897

898

899

900

901

903

904

905

906

907

908

909

910

911

913

914

915

916

918

919

920

921

922

923

Definition 14 (Represents Table). A represents table R is a 4-column table where a row stores
the two endpoints of an edge picked during an iteration of the execution of the augmented 2-
approzimation algorithm, and for each endpoint u, also stores the corresponding represents list L,
which consists of the vertices the endpoint u represents.

Example 4. We are given the Petersen graph G (Figure @), a perfect matching M and the levels
of a BFS tree seeded on vertex 0 (Table . As discussed in Example @ the first iteration of the
augmented 2-approzimation algorithm picks the edge connecting the vertices 0 and 1 and removes
all the edges that are connected to the two endpoints of the picked edge (Figures @a and @b} Then,
the corresponding entry in the represents table R is as follows:

Endpoint | Represents || Endpoint | Represents
1 List 1 2 List 2
0 | Lo = {1,4,5} || 1 L, =1{0,2,6}

Table 2: A row in the Represents Table R depicts (i) the two endpoints of an edge picked by the
augmented 2-approximation algorithm and (ii) the corresponding represents list of each of the
two endpoints. A represents list consists of the vertices connected to an endpoint during a given
iteration of the algorithm.

The first endpoint, namely vertex 0 represents vertices 1, 4, and 5. The second endpoint, namely
vertex 1 represents vertices 0, 2, and 6.

At this point, one may argue that the represents table is our fancy way of renaming an adjacency
list. However, given the differences between their properties, we avoid using the latter term to avoid
the confusion and to ensure that the represents table is visualized as a data structure that is different
from an adjacency list. More specifically, unlike the adjacency list where each row enlists all the
vertices connected to a vertex, the represents table stores the two endpoints of a picked edge in
the same row. The corresponding represents list enlists only the vertices that are connected to an
endpoint during a given iteration of the augmented 2-approximation algorithm. The stress on the
words given iteration signifies that for a vertex to be listed in the represents list, an edge connecting
the vertex and the endpoint should not have been removed during any of the previous iterations of
the 2-approximation algorithm.

Example 5. We continue the discussion from Example []] where we had populated the first row of
the represents table (Table @)

The second iteration of the augmented 2-approximation algorithm picks the edge connecting the
vertices 4 and 9 (Figure @c} Note that the represents list for vertex 4 enlists the vertices 9 and
3. Vertex 0 is not listed because the edge connecting vertices 0 and 4 was removed during the first
iteration. The represents list for the vertex 9 is Ly = {4,6,7}. Neat, the algorithm now removes all
the edges that are connected to the two endpoints of the picked edge (Figure @d}

Similarly, the represents table is populated until the augmented 2-approzrimation algorithm ter-
minates. Finally, the represents table R is populated completely and it looks as follows:

Endpoint | Represents Endpoint | Represents
1 List 1 2 List 2
0 Lo =1{1,4,5} 1 L, ={0,2,6}
4 Ly=1{9,3} 9 Ly ={4,6,7}
5 L; ={7,8} 7 L; ={5,2}
2 Lo ={3} 3 Lz ={2,8}
6 Lg = {8} 8 Ls = {6}

Table 3: A Represents Table R populated as a result of the implementation of the augmented 2-
approximation algorithm for the vertex cover problem on a given instance of the Petersen graph, a
corresponding perfect matching M, and a BFS tree.

Operations and Properties of the Represents Table: We now discuss the operations that
are supported by the represents table and discuss the properties relevant to this paper.

Operations: The represents table supports four basic operations, namely, insert, access, freeze, and
remove. The represents table does not support deletion of any information, as will become evident
during the discussion of the diminishing hops phase of our algorithm.

26



924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

944

945

946

947

948

949

950

951

952

953

954

955

956

957

959

960

961

962

963

964

965

966

967

968

969

e insert: The most basic operation supported by the table is the insertion of a vertex and its
corresponding represents list. Additionally, the insertion operation does not need to access
previous data. Hence, the asymptotic running time for each insert operation is O(1). We
witnessed this operation while populating the represents table.

e access / search: (i) To access an endpoint u in the represents table, we do a sequential search
for the given endpoint. This takes O(m). (ii) To access the represents list of an endpoint u, we
need to first access the endpoint u, which takes O(m). Subsequently, accessing the represents
list L, takes O(1). (iii) To access each of the represents list that consists of a vertex u, we
need to traverse through each of the m represents lists, each of constant size (three). This
takes O(m). Hence, the asymptotic running time for each access operation is O(m).

e freeze: The freeze operation is used to freeze an endpoint. In the context of this paper, when
we freeze an endpoint, it implies that the frozen vertex is selected as one of the vertices in the
vertex cover. Next, whenever an endpoint u is frozen, it is simultaneously delisted from each
of the represents lists it is a part of. This is analogous to marking every edge that touches the
vertex u chosen for the vertex cover as being covered. Finally, the entire represents list L,, of
the vertex w is delisted.

Freezing an endpoint u takes O(m) time as we need to do a sequential search for the endpoint
u. The delisting of the vertex u from each of the represents lists also takes O(m): for each
of the m endpoints, we need to traverse through its represents list of size at most three and
delist the vertex u from the represents list if present. The delisting of the represents list L,
takes O(1). Hence, the asymptotic running time for each freeze operation is O(m).

e remove: The remove operation is used to remove an endpoint. In the context of this paper,
when we remove an endpoint u, it implies that the removed endpoint is not selected as one
of the vertices in the vertex cover. Hence, each of the three vertices that are connected to
the removed endpoint needs to be in the vertex cover to cover the edges that are connected
to the removed vertex. Hence, the corresponding steps carried out in the represents table are
as follows: each vertex in the represents list of the removed endpoint v and each vertex that
represents the endpoint u is frozen.

The removal of an endpoint u takes O(m) time as we need to search for the endpoint u using
a sequential search. The freeze operation will be carried out three times and each one takes
O(m). Hence, the asymptotic running time for each remove operation is O(m).

These are the main operations that can be carried out on the represents table. The space
complexity of the table is O(m).

Operation | Time Complexity
insert o)
access O(m)
freeze O(m)
remove O(m)
delete operation not allowed

Table 4: The time complexity of each operation carried out on the Represents Table.

Properties: We discuss unique properties of the represents table, which are essential for our dis-
cussion on the phase three (diminishing hops) of our algorithm.

Property 1. Given a represents table R, an endpoint u in the i'" row of the table R can only
represent an endpoint v if the endpoint v is in row j of the table R, for all 1 < i < j < .
Conversely, an endpoint u in the j** row of the table R can be represented by an endpoint v only if

the endpoint v is in the it" row of the table R, for all1 <i < j < 5.

Property [1] discusses that an endpoint in an earlier row within the represents table can only
represent endpoints in the same row or any later row. It cannot represent endpoints in rows that
come before it. Conversely, an endpoint in a later row within the represents table can only be
represented by endpoints in the same row or any earlier row. It cannot be represented by endpoints
in rows that come after it. Overall, these describe a “directional” relationship within represents
table. Endpoints in earlier rows can represent endpoints in the same or later rows, and conversely,
endpoints in later rows can be represented by endpoints in the same or earlier rows.

27



970

971

972

973

974

976

977

978

979

980

981

982

984

985

986

987

989

990

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

Property 2. Given a represents table R, endpoints u and v in the i'" row of the table R always
represent each other, i.e., endpoint u € L, and endpoint v € L, if endpoints v and v are in the it"
row for all 1 <1 < 7.

Property [2] discusses that endpoints in the same row of the represents table always represent
each other. Property [2 adheres to Property [I] and Property [2] can be considered a specific case of
Property [I] However, neither of the properties implies the other. Moreover, when we combine these
two properties, they imply three possibilities about the representations related to an endpoint u in
the table R when a graph is cubic : (i) u is represented by two other endpoints in rows above itself
and does not represent any endpoint in rows below itself, (ii) u is represented by one endpoint in
rows above itself and it represents one endpoint in rows below itself, and (iii) w is represented by
zero endpoints in rows above itself and represents two endpoints in rows below itself.

Property 3. Given a represents table R, an endpoint u € R corresponds to a vertex uw € V' of the
corresponding graph G, and the set of endpoints in the represent table R forms a vertex cover S C'V
of the corresponding graph G.

Property [3| refers to the simple one-to-one mapping of an endpoint in the represents table R
and a vertex in the corresponding graph . Additionally, in the general case, the endpoints in
the represents table R form a vertex cover. This is because the endpoints of edges picked during
maximal matching form a vertex cover. In our case of cubic bridgeless graphs, we always have a
perfect matching and hence, all vertices of G will be an endpoint in the represents table R and these
trivially form a vertex cover (because all vertices of a graph form a vertex cover).

Property 4. Given a represents table R, if each endpoint u € R is either frozen or removed, then
the frozen endpoints form a vertex cover S C 'V of the corresponding graph G.

Property [4| discusses the specific case when all the endpoints of the represents table R are either
frozen or removed, and specifically the frozen endpoints form a vertex cover. The frozen endpoints
form a vertex cover, so we focus our discussion on the removed endpoints. By design, when an
endpoint is removed, all endpoints that it represents or is represented by are automatically frozen.
This implies that no edge in the corresponding graph remains uncovered. Hence, the frozen endpoints
will form a vertex cover when every endpoint is either frozen or removed. The frozen vertices do not
form a vertex cover when at least one endpoint is neither frozen nor removed. This is because we
can freeze, say, m —2 endpoints and not touch the remaining 2 endpoints. The frozen endpoints may
not form a vertex cover because the remaining 2 endpoints may be connected via an edge. Hence,
the condition that each endpoint in the represents table R be either frozen or removed is necessary
for the frozen endpoints to form a vertex cover.

Overall, the operations performed on the represents table result in the above-discussed unique
properties of the represents table. These operations and properties form the foundation for the
discussion of the next phase of the algorithm.

In summary, in the Phase II of the algorithm, given a cubic bridgeless graph G, a list of lexico-
graphically sorted vertices V¢, and a perfect matching M as input, we create a BFS tree, run an
augmented version of the 2-approximation algorithm for the VC, and populate a novel data structure
called the represents table R. The output of this phase is the represents table R. Additionally, we
discussed how the represents table was created and listed its operations and properties:

1. We began with an underlying data structure, a table.

2. We used the BFS tree and the augmented 2-approximation algorithm to collect specific infor-
mation needed to populate the represents table.

3. We discussed the corresponding insert operation that is used to enter the information into the
represents table. We also discussed the access, freeze, and remove operations.

4. We analyzed the time complexity of each operation ]

5. We observed some unique properties of the represents table.

29We may improve the time complexity of the operations by augmenting the existing data structure “represents
table” with a doubly linked list or a hash table. However, we leave such improvements to future work.

28



1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

Augmenting Paths for Maximum Matching

bbb

Diminishing Hops for Minimum Vertex Cover

Figure 10: A high-level illustration of augmenting paths being a motivation for diminishing hops.

4.3 Diminishing Hops

The diminishing hops phase of the algorithm constitutes the core contribution of the paper. To
understand the concept of diminishing hops and its relevance to the minimum vertex cover, we first
introduce the concept of “representation scores” and use it to decide whether to freeze or remove
an endpoint from the represents table. We then discuss augmenting paths and its relevance to the
maximum matching (Berge’s theorem [Ber57]), which serves as a motivation to finally introduce
diminishing hops for the minimum vertex cover (Figure .

Representation Score: The idea for using Representation Score is to associate a score with each
endpoint in the represents table R such that the score of each endpoint is used to decide whether to
freeze an endpoint or remove it. The score is a quantification of the information related to each edge
that connects the vertices of the graph. More specifically, the score of an endpoint is a weighted
number that captures how well an endpoint is represented by other endpoints in the table.

The assignment of the score begins from the top row of the represents table R. The score assigned
to an endpoint u is the sum of the scores of the endpoint that is on the same row as each endpoint
that represents u. For instance, consider that the endpoint u is in the i*" row of the represents table
R, for some integer ¢ > 1. Next, if some endpoint z in row j, for all j € [1,i — 1], represents the
endpoint u, then the score of endpoint y that is in the same row j as endpoint = is added to the
score of endpoint u plus one. The score of each endpoint is initialized to zero.

Definition 15 (Representation Score). The representation score ¢ of an endpoint u in row i of the
represents table R is denoted by

Cu = Z(Cy + 1)

where endpoint y is in the same row as endpoint x for all endpoints x such that w € L, and y # u.
By design, the endpoint y will be in row j for some integer j such that 1 < j < 1.

The higher the score of endpoint y, the higher the chance of endpoint v being frozen so that
endpoint x can, in turn, be removed. Recall that both the endpoints in the first row have a score of
zero each and the computation moves downward.

Example 6. We use the populated represents table constructed in Example[5.

The representation score of both endpoints in the first row is 0. Hence, (3 = (1 = 0.

There are two endpoints in the second row, namely 4 and 9. The endpoint 9 is not represented by
any endpoint, which implies its score (9 = 0. The endpoint 4 is represented by endpoint 0. Hence,
its score will be equal to the score of endpoint 1 (plus 1) because endpoint 1 is in the same row as
endpoint 0. This means (4 = (1 +1 = 0+ 1 = 1. Similarly, the representation score ¢ will be
appended to the represents table R as follows:

Representation || Endpoint | Represents Endpoint | Represents Representation
Score ¢ 1 List 1 2 List 2 Score (
Co=20 0 Lo={1,4,5} 1 L, ={0,2,6} ¢(1=0
=1 4 Ly=1{9,3} 9 Ly =1{4,6,7} Co=0
=1 5 L; ={7,8} 7 L; ={5,2} (r=2
(=3 2 Ly = {3} 3 Ls = {2,8} (3=1
G =3 6 Le = {8} 8 Lg = {6} (s=1T7

Table 5: The Represents Table R is appended with representation score ¢ for each endpoint.

29



1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

We jump to calculate the representation score of the last endpoint in the last row, namely,
endpoint 8. The endpoint 8 is represented by endpoints 3 and 5. Hence, its score will be equal
to the sum of scores of endpoints 2 and 7 (plus 1 for each endpoint). This is because endpoint
2 is in the same row as endpoint 3 and endpoint 7 is in the same row as endpoint 5. Hence,
G=(L+D)+(G+)=B+)+(2+1)=4+3="7.

Finally, while computing the representation score, we traverse through the entire represents table
by exploiting the fact that an endpoint v can be represented by at most two endpoints in rows above
itself. This is because the vertex degree of each vertex is three and one endpoint is in the same row
as endpoint u. Hence, the time complexity of computing the score is linear. We discuss the details
about the algorithm to compute scores and its complexity in Sections [5| and [7] respectively.

Freezing and Removing Endpoints using Representation Score: The representation scores
are used to determine which endpoints to freeze or remove. The procesﬂ of freezing or removing an
endpoint begins from the bottom row of the represents table R. There are two endpoints in the last
row, u and v. We freeze the endpoint with a higher representation score {. Ties are broken using
lexicographic ordering of the vertices. Simultaneously, we remove the other endpoint. Formally:

flu,v) =

freeze(v) and remove(u), if ¢, < (,
freeze(u) and remove(v), otherwise

Recall that when an endpoint v is frozen, it is delisted from each represents list it is in. Therefore,
for each endpoint a € R, L, = L, \ u. Simultaneously, all entries in the represents list of u are
delisted. Hence, L, = . Next, when an endpoint v is removed, all entries in the represents list
of v is delisted (L, = @) and each endpoint that represents the endpoint v is frozen. Finally, the
representation scores of each endpoint in the remaining rows is recalculated top-down. The process
now iteratively moves up row-wise of the represents table R. This process of freezing and removing
endpoints of each row continues until each endpoint in the represents table R is either frozen or
removed. However, during an iteration, when an endpoint in a given row is already frozen, the other
endpoint is automatically removed. On the other hand, when an endpoint in a given row is already
removed, the other endpoint, by design, would have been frozen. Finally, when both endpoints are
frozen, no action is performed. In either case, the algorithm moves to the next iteration without the
need to use the representation score. The case when both the endpoints are removed is impossible.

Example 7. We use the represents table with representation scores constructed in Ezample [0

The process of freezing or removing an endpoint begins from the bottom row. Here, there are two
endpoints, namely 6 and 8, having representation scores of (¢ =3 and (g = T7.

First, freeze endpoint 8 because it has a higher representation score (Cg > (¢ (7 > 3)).Then, delist
the endpoint 8 from the represents lists L3 and Ls. Also delist the entire represents list Lg.

Next, remove endpoint 6. Then, freeze the endpoints 1 and 9 because the removed endpoint 6 is in
the represents lists Ly and Lg. Delist the entire represents list Lg. Additionally, because endpoints 1
and 9 are frozen: (i) delist the endpoint 1 from the represents list Lo and delist the endpoint 9 from
the represents list Ly, and (i) also delist the entire represents lists Ly and Lg.

Finally, recalculate the represents score of all the endpoints that are neither frozen nor removed.
The representation table at the end of the first iteration, carried on the bottom row, looks as follows:

Representation || Endpoint | Represents || Endpoint | Represents Representation
Score ( 1 List 1 2 List 2 Score ¢
=0 0 Lo={ 4,5} 1 G1=0
=1 4 Li={ 3} 9 G =0
C5:1 5 L5:{7, } 7 L7:{5,2} C7:0
G=2 2 Ly ={3} 3 L3 =12, } G=1

8

Table 6: The Represents Table R after the first iteration of freezing and removing endpoints based
on the representation score. The bold red font denotes that an endpoint is frozen. The grayed-out
entries denote removed / delisted endpoints.

At the end of all iterations, the endpoints 0, 3, 6, and 7 are removed from the represents table
R. The endpoints 1, 2, 4, 5, 8, and 9 are frozen in the represents table R.

30 A process here denotes a sequence of steps that are followed and should not be misinterpreted from the context
of a process in operating systems.

30



1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

At the end of the process of freezing or removing endpoints using the represents table R, the
frozen endpoints correspond to the vertices in a vertex cover S’ of the graph G. We stress that at
this moment, we do not make any claim about the size of the vertex cover.

Theorem 4. Given a graph G consisting of a set V' of m vertices and the corresponding represents
table R populated by a set W of m endpoints, a set S” of | endpoints in the represents table R is
frozen, for some integer 1 <1 < m, and a disjoint set W\ 8" of m — 1 endpoints in the represents
table R is removed if and only if there is a vertex cover S’ of | vertices in the graph G that correspond
to the set S” of frozen endpoints.

Proof. (=) If a set S” of | endpoints in the represents table R is frozen, for some integer 1 <1 < m,
and a disjoint set W\ S” of m — [ endpoints in the represents table R is removed, then there is a
vertex cover S’ of [ vertices in the graph G that correspond to the set S” of frozen endpoints.

When the represents table is populated, all the vertices in G are listed as endpoints. Hence, the
endpoints trivially form a vertex cover (Property . Next, the computation of representation scores
and the consequent process of freezing and removal of the endpoints results in each endpoint either
being frozen or removed. Hence, the frozen endpoints form a vertex cover (Property .

(<) If there is a vertex cover S’ of [ vertices in the graph G, for some integer 1 <[ < m, then
a set S” of | endpoints in the represents table R is frozen that correspond to the vertex cover S’
and a disjoint set W\ S” of m — [ endpoints in the represents table R is removed. This is the
straightforward case, as we can simply freeze the endpoints that correspond to the vertices in the
vertex cover S’ and remove the rest of the endpoints. O

Again, we stress that the above-stated theorem guarantees that the frozen endpoints form a
vertex cover and does not give any guarantee regarding the size of the vertex cover. We leave the
analysis on the size of the vertex cover derived using representation scores for future work. Overall,
here, we discussed the use of representation scores to freeze or remove each endpoint in the given
represents table, and the resultant frozen endpoints form a vertex cover. We finally discuss how the
represents table, representation score, and the vertex cover are used in the diminishing hops.

Diminishing Hops: The concept of diminishing hops is inspired by the use of augmenting paths
for maximum matching (Figure . More specifically, we prove a theorem on the use of diminishing
hops for minimum vertex cover, just like Berge’s theorem is proven on the use of augmenting paths
for maximum matching [Ber57]. To do so, we first discuss an augmenting path and its relation to
a maximum matching proven through Berge’s theorem. Then, we introduce a diminishing hop and
show its relation to the minimum vertex cover through a theorem (analogous to Berge’s theorem).

Berge’s Theorem, Augmenting Paths, and Maximum Matching: The Blossom Algorithm [Edm65]
is a polynomial-time algorithm to find a maximum matching in a given graph. The key concept that
the Blossom algorithm relies upon is Berge’s theorem:

Theorem 5 (Berge’s Theorem [Ber57]). Given a graph G and a matching M, M is a mazimum
matching if and only if there is no M -augmenting path in the graph G.

To understand this, we first define an alternating path and an augmenting path.

Definition 16 (Alternating Path). Given a graph G and a matching M, an alternating path P
w.T.t. the matching M is a path that (i) starts from a vertex v that is not incident to any edge e in
the matching M and (ii) whose edges alternate between not being in M and being in M (or being
in M and not being in M if the path starts from a verter v that is incident to any edge e in the
matching M ).

Definition 17 (Augmenting Path). Given a graph G and a matching M, an augmenting path is
an alternating path w.r.t. matching M that starts from a vertex v and ends at a vertex u such that
u # v and neither the vertex u or the vertex v is incident to any edge e in the matching M.

An augmenting path’s characteristic is that it increases the size of an existing matching. Hence,
if there is an augmenting path P w.r.t. a matching M, then we can increase the size of the matching
by one. To do so, we create a new matching M’ by flipping the edges along the path P such that (i)
if an edge is in M, then it is not in M’ and (ii) if an edge is not in M, then it is in M’ (Figure .
Formally, the new matching M’ can be denoted by M’ = (M\ P)U(P\ M) and hence, |M'| = |M|+1.
Berge’s theorem uses this characteristic to prove that a matching M is maximum if and only if there
is no augmenting path w.r.t. M (Theorem [5).

31



1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

—C0—6@&—C© =) &—C0—66—0O

(a) (b)

Figure 11: (a) An augmenting path from vertex u to y alternates between an edge not in a matching
and an edge in the matching (thick edge). (b) It leads to an edge being augmented to the matching.

We practically described an algorithm to find a maximum matching: start with an initial match-
ing (even a blank matching), augment the current matching with augmenting paths, and terminate
when no augmenting path remains. The eventual augmented matching is a maximum matching.
Subsequently, the key contribution of the Blossom algorithm is to find augmenting paths efficiently.

Similarly, this section first introduces the concept of a diminishing hop and then shows its relation
to a minimum vertex cover. Finally, we discuss how to compute a diminishing hop efficiently in
Section [5| (Algorithm) and analyze its time complexity in Section

Diminishing Hop: A represents table R consists of vertices V' in graph G that are endpoints of
edges in a maximum matching M found using the Blossom algorithm. In our case (of using cubic
bridgeless graphs), all vertices of a given graph G will be endpoints in the represents table because
a perfect matching always exists. Next, if each endpoint in the represents table is either frozen or
removed, then the frozen endpoints form a vertex cover (Property . Conversely, if a vertex cover
S of a graph is given, then the corresponding endpoints in the represents table can be frozen and
the rest removed (i.e., endpoints in .S can be frozen and endpoints in V'\ S removed). Finally, in our
case, the represents table consists of 5 rows, which is also the lower bound on the size of the MVC.

Given that % corresponds to the lower bound of an MVC and to the number of rows in the
represents table, we ideally want exactly one endpoint from each row frozen and the other removed.
Removing both endpoints of a given row is not possible by design. Hence, if there is a row in the
represents table that consists of two frozen endpoints, then it should be assessed if removing one of
them can lead to a smaller number of frozen endpoints in the table. This corresponds to a smaller-
sized vertex cover. Importantly, recall that % is a lower bound and not the size of the MVC. Hence, it
is perfectly possible for more than one row of the represents table to have both its endpoints frozen.
The aim here is to assess whether decreasing the number of such rows is possible or not.

Consider a represents table R such that each endpoint is either frozen or removed and ezactly
one of its rows has both its endpoints frozen. The set of frozen endpoints corresponds to a vertex
cover S. We shall generalize this discussion to when at least one of the rows has both its endpoints
frozen later on by successively doing diminishing hop@ Hence, for now, given a represents table R
where (i) each endpoint is either frozen or removed, (ii) each endpoint is marked “unvisited”, and
(iii) one of the rows has both its endpoints frozen, we carry out the following sequence of operations:

1. Endpoints v and v in row 4 are both frozen, for some integer i € [1, %]. Both are marked
“unvisited”. Hence, we start the hopping phase by choosing an endpoint to remove, say u.

2. Remove endpoint u. Consequently, by design, each endpoint x is frozen such that either (i) z
is represented by endpoint u or (ii) = represents endpoint . Mark endpoints v and v of row ¢
and each endpoint = as “visited”. Enqueue endpoint u in a queue (). Subsequently,

(a) For all integers j € [i + 1, %], consider an endpoint x in row j such that x is represented
by endpoint u. If the j** row has two frozen endpoints = and y, repeat Step 2 by choosing
to remove endpoint y if endpoint y is marked “unvisited”. Move to Step 2(b) when either
an endpoint marked “visited” is encountered or endpoint u represents no endpoint or only
one endpoint in row j is frozen and “visited”.

(b) Dequeue an endpoint u from queue Q. For all integers j € [1,i—1], consider an endpoint x
in row j such that z represents endpoint «. If the j** row has two frozen endpoints = and
y, repeat Step 2 by choosing to remove endpoint y if endpoint y is marked “unvisited”. If
no endpoint represents endpoint u or when an endpoint marked as “visited” is encountered
or only one endpoint of row j is frozen and “visited”, then either (i) repeat Step 2(b) if
the queue @ is non-empty or (i) move to Step 3 if the queue @ is empty.

31Indeed, the proof for diminishing hops should eventually seem similar to the proof connecting augmenting paths
and maximum matching (Berge’s Theorem: Theorem 1, [Ber57]). Hence, an understanding of the proof of Berge’s
Theorem will make our proof easier to follow.

32



1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

3. Count the number of marked frozen vertices S, resulting from removing endpoint u. Mark
all the endpoints as “unvisited” and restore the represents table to the starting state (as was
given before Step 1). Repeat Step 2 by removing endpoint v. Subsequently, count the number
of marked frozen vertices S, resulting from removing endpoint v.

4. The vertex cover S is the initial set of frozen endpoints in the given represents table R. Hence,
if |S] < |Sy| and |S| < |S,]|, then do nothing. Else if |S,| < |S,|, then the diminished vertex
cover is Sy; else the diminished vertex cover is S,,.

We almost informally stated the algorithm for diminishing hops for the restricted case when we
are given a represents table where each endpoint is either frozen or removed, and when exactly one
row has both its endpoints frozen. However, we leave formalization to Section [5] Here, we discuss
how a diminished vertex cover implies a minimum vertex cover, and importantly, when a given set
of frozen endpoints is not diminishable, the given vertex cover is indeed the minimum vertex cover.
We first give an example:

Example 8. We use the represents table that results after freezing or removing each endpoint dis-
cussed in Example[] Recall that the endpoints 0, 3, 6, and 7 are removed from the represents table
R and the endpoints 1, 2, 4, 5, 8, and 9 are frozen. The latter corresponds to a vertex cover.

Endpoint | Represents || Endpoint | Represents
1 List 1 2 List 2
Lo={14,5} 1 L, ={0,2,6}
4 Ly =1{9,3} 9 Ly ={4,6,7}
5 L; ={7,8} L; ={5,2}
2 Ly = {3} Lz = {2’ 8}
L¢ = {8} 8 Ls = {6}

Table 7: The Represents Table R where each endpoint is either frozen (red font) or removed (gray
font), and one row has both its endpoints frozen (yellow highlight).

Endpoints 4 and 9 in row 2 are frozen. Remove endpoint 4 (as per Step 2). Hence, row 2 now has
only one frozen endpoint. Mark both the endpoints as “visited” (green highlight). Enqueue endpoint
4 to the queue Q@ = {4}. By design, endpoints 0 and 3 are frozen. This is because endpoint 3 is
represented by endpoint 4 (see list Ly) and endpoint O represents endpoint 4 (see list Ly ).

Endpoint | Represents || Endpoint | Represents
1 List 1 2 List 2
.QO Lo ={14,5} 1 L, ={0,2,6}
— | Ly={9, | 9 Lo = {4,6,7}
5 Ls = {7,8} \ L7 = {5,2}
2 L, = {3} 3 L; ={2,8}
Le = {8} 8 Ls = {6}

Table 8: Mark endpoints 4 and 9 as “visited” (green highlight). Remove endpoint 4. Consequently,
endpoints 0 and 3 are frozen and marked “visited”. We will first hop (red arrow) from row 2 to row
4, which corresponds to hopping from the removed endpoint 4 to endpoint 3 and then hop from row
2 to row 1, which corresponds to hopping from the removed endpoint 4 to endpoint 0.

First, hop to row 4 that contains endpoint 3 (as per Step 2(a)). Now, row 4 consists of two frozen
endpoints, namely, 2 and 3. Next, hop to endpoint 2 to remove it (i.e., repeat Step 2).

Endpoint | Represents || Endpoint | Represents
1 List 1 2 List 2
0 Lo={14,5} 1 L, =1{0,2,6}
Ly =1{9,3} 9 Lo ={4,6,7}
5 | Ly=1{7.8) L: = {5.2)
et 300 L= 1{2,8)
Le = {8} 8 Ls = {6}

Table 9: Hop (red arrow) from frozen endpoint 3 to endpoint 2. The latter is subsequently removed.

33



1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

We removed endpoint 2 (as per Step 2). Mark endpoint 2 as “visited”. Enqueue endpoint 2 to
the queue Q = {4,2}. Next, freeze and mark endpoints 7 and 1 as “visited”. Next, we hop to rows

where endpoint 2 is represented by an endpoint, namely, endpoint 1 in row 1 and endpoint 7 in row
3.

Endpoint | Represents || Endpoint | Represents
1 List 1 2 List 2
O LT T L =1{0,2,6
4 = {933} 9 Ly = {43 6, 7}
5 Ls = {77 8} 7 L; = {5a 2}
< Ly = {3} -/'3 Ly ={2,8}
=i 8 | Ls={6}

Table 10: Hop (red arrow) from row 4 to row 3 and row 1, which corresponds to hopping from
removed endpoint 2 to endpoint 7 and endpoint 1, respectively.

At this point, no “unvisited” endpoint is represented by endpoint 2. Hence, as per Step 2(a),
we move to Step 2(b). De-queuing queue Q = {4,2} gives us endpoint 4 and therefore @ = {2}.
Endpoint 4 is represented by one endpoint, namely 0 in row 1. We hop to row 1. Both the endpoints
of row 1 are marked “visited” (and are frozen). Hence, we repeat Step 2(b) as queue Q is not empty.

De-queuing queue Q = {2} gives us endpoint 2 and therefore Q = {}. Endpoint 2 is represented
by endpoints 1 and 7. Recall that we simply marked the endpoint 1 as “visited” because it is already
frozen. Both the endpoints of row 1 are already marked “visited” (and are frozen). Next, we hop to
row 3. Row 3 consists of two frozen endpoints and one of them is marked “unvisited”. Hence, hop
to endpoint 5 and remove it (i.e., repeat Step 2).

Endpoint | Represents || Endpoint | Represents
1 List 1 2 List 2
0 Lo ={14,5} 1 L, ={0,2,6}
Ly=1{9,3} 9 Ly={4,6,7}
< Fr= {73 8} 7 L; = {5v 2}
Ly ={3} 3 Lz ={2,8}
Le = {8} 8 Ls = {6}

Table 11: Hop (red arrow) from frozen endpoint 7 to endpoint 5. The latter is subsequently removed.

We removed endpoint 5 (as per Step 2). Mark it “visited”. Enqueue endpoint 5 to the queue
Q = {5}. Consequently, freeze and mark endpoints 0 and 8 as “visited”. Next, we first hop to the
row where endpoint 5 represents an endpoint, namely, endpoint 8 in row 5. We then hop to row
where endpoint 5 is represented by an endpoint, namely, endpoint 0 in row 1.

Endpoint | Represents || Endpoint | Represents
1 List 1 2 List 2
0 Lo={14,5} 1 L, ={0,2,6}
( Ly ={93} 9 Ly={4,6,7}
— | Ls ={T, | 7 Ly = {5,2}
Ly, = {3} \3 Ls = {2,8}
Le = {8} 8 Ls = {6}

Table 12: Hop (red arrow) from row 4 to row 5 and row 1, which corresponds to hopping from
removed endpoint 5 to endpoint 8 and endpoint 0, respectively.

First, hop to row 5 that contains endpoint 8 (as per Step 2(a)). Row 5 consists of one frozen
endpoint, which is marked “visited”. Note that endpoint 6 was already removed and hence, we need
not visit it as only one endpoint from its row is frozen. Additionally, by design, each endpoint
represented by and representing endpoint 6 is frozen. Hence, we move to execute Step 2(b).

De-queuing queue Q = {5} gives us endpoint 0 and therefore Q = {}. Endpoint 5 is represented
by one endpoint, namely 0 in row 1. We hop to row 1. Both the endpoints of row 1 are marked
“visited” (and are frozen). Hence, we move to Step 3 as queue Q) is empty.

34



1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

The number of frozen endpoints is siz. Hence, the corresponding vertex cover Sy = {0,1,3,7,8,9}
s of size siz and is mot smaller than S, the original vertex cover given to us. We repeat the entire
ezercise by removing the endpoint 9 in Table[]. We get the corresponding vertex cover Sg of size siz
as well. Hence, as per Step 4, the vertex cover S is not diminishable, and consequently, it is indeed
the minimum vertex cover, which we prove in the succeeding discussion.

We are now ready to define a diminishing hop and prove the corresponding theorem that relates
the above-discussed restricted diminishing hops to the minimum vertex cover.

Definition 18 (Duadic Hop). Given a represents table R where each endpoint u in table R is either
frozen or removed, a duadiﬁ hop H w.r.t. to the frozen endpoints in table R (equivalently w.r.t. to
a given vertex cover S) is a sequence of operations that (i) starts at a row where both (duad of ) the
endpoints are frozen, (ii) removes one of the endpoints, (iii) freezes each endpoint that represents or
is represented by the removed endpoint, and (iv) repeats each operation until no “unvisited” endpoint
remains or “unvisited” but removed endpoints remain or an already frozen endpoint is encountered.

A duadic hop is analogous to an alternating path (Definition , but unlike an alternating
path, where the path alternates between edges in matching and not in matching, a duadic hop is
a sequence of operations that alternately freezes and removes endpoints in the table R. Hence,
while an alternating path exists in a graph, a duadic hop does not exist in a table R but is created.
The nomenclature of a duadic hop is based on the fact that the hop starts with a duad (or pair)
of frozen endpoints, removes one of them, and hops to another row, (possibly) creating a duad of
frozen endpoints at the row it hopped tﬂ We now define a diminishing hop:

Definition 19 (Diminishing Hop). Given a represents table R where each endpoint u in table R is
either frozen or removed, a diminishing hop H w.r.t. to the frozen endpoints in table R (equivalently
w.r.t. to a given verter cover S) is a duadic hop w.r.t. to a vertex cover S that removes at least one
more endpoint than it freezes while satisfying all the properties of the table R.

A diminishing hop is analogous to an augmenting path (Definition . The former diminishes
the size of a given vertex cover, and the latter augments the size of a given matching. Let us elaborate
on the similarity between the two concepts. To find a maximum matching, Berge [Ber57), [Edm65]
suggested searching for augmenting paths. Specifically, he suggested starting from an exposed vertex
(i.e., a vertex which is connected to edges not in a matching). Then, walk along an alternating path
by iteratively finding the path until it exists. Consequently, if this alternating path stops at an
exposed vertex, then it is an augmenting path, and the size of the matching can be increased by
one. On the other hand, if the path is not augmenting, then backtrack (a little), choose another
edge, and continue to form an alternating path until no augmenting path exists.

H Augmenting Path ‘ Diminishing Hop

start at a row in the represents table
where a duad of (i.e., both) endpoints
are frozen (i.e., both endpoints of an
edge are in the given vertex cover)
How to proceed? || follow an alternating path perform a duadic hop

when the number of endpoints re-
when another exposed vertex is | moved > the number of endpoints
encountered in an alternating | frozen during a duadic hop, while sat-
path, or no such vertex exists isfying the table’s properties, or no
such duadic hop exists

searching for augmenting paths | searching for diminishing hops is a
What is the use? || is a technique to find a maximum | technique to find a minimum vertex
matching (Theorem cover (Theorem

start at an exposed vertex in the
Where to start? graph, which means none of its
edges is in the given matching

When to termi-
nate?

Table 13: An overview of the similarities between an augmenting path and a diminishing hop.

32The term “dyadic” (or dyad) is more commonly and interchangeably used in English as compared to “duadic”
(or duad), but not in a mathematical context. For instance, dyadic has a specific meaning in linear algebra. Hence,
we use “duadic” instead of “dyadic” to prevent confusion and emphasize that the two terms are unrelated.

33The word “possibly” is in the parenthesis because when using cubic bridgeless graphs and representation score ¢
to freeze / remove endpoints as done in the paper, it is guaranteed to create a duad of frozen endpoints in at least
one of the rows we hop to. However, if we do not use the representation score ¢ to freeze / remove endpoints, then it
is possible that such a duad may not be formed during a duadic hop. We leave this analysis to future work.

35



1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

Similarly, to find a minimum vertex cover, we propose searching for diminishing hops. Specifically,
we are given a vertex cover S. The vertices in the vertex cover correspond to the frozen endpoints in
the represents table (and vertices in V'\ S correspond to removed endpoints). If exactly one endpoint
of each row is frozen, it is the minimum vertex cover, and we need not do anything. However, if
we have two frozen endpoints in a row, then we start from a row where both of its endpoints are
frozen. Then, move along a duadic hop by iteratively removing and freezing endpoints until possible.
Consequently, when duadic hops stop, if the number of endpoints removed is greater than the number
of endpoints frozen, then the duadic hop is a diminishing hop, and the size of the vertex cover is
decreased (by one). On the other hand, if the duadic hop is not diminishing, then backtrack (a
little), choose another endpoint to remove (or row with two frozen endpoints), and continue duadic
hops until no diminishing hop exists. At this point, we stress that we do not discuss time complexity
and focus on formalizing the relation between diminishing hops and minimum vertex cover.

Note that the definitions of a duadic hop and a diminishing hop are general in that they hold for
diminishing hops for restricted and for the general casﬂ We now prove a theorem that associates
diminishing hop and minimum vertex cover for the restricted case of represents table R where
exactly one row contains two frozen endpoints. Subsequently, we prove a theorem that associates
diminishing hop and minimum vertex cover for the general case of represents table R where at least
one row contains two frozen endpoints. Recall that when one endpoint of each row is frozen, the
frozen endpoints form a minimum vertex cover, and hence, we do not need to prove anything.

Theorem 6 (Restricted Diminishing Hop and Vertex Cover). Given a cubic bridgeless graph G,

a corresponding represents table R and a vertex cover S of size % + 1 (derived using R), S is
the minimum-size vertex cover derivable from the represents table R if and only if there is no S-
dimanishing hop in the represents table R.

Proof Outline: In this restricted case, the size of the minimum vertex cover can either be ‘Z—l +1
or % By definition, we start with a vertex cover of size % + 1. Hence, if a diminishing hop w.r.t.
the given vertex cover does not exist, then it implies that the given vertex cover is the minimum
vertex cover. Additionally, if there is a diminishing hop, then the resultant vertex cover is of size
%, which is the minimum-size vertex cover possible in a graph having a perfect matching. On the
other hand, if the given vertex cover is not a minimum vertex cover, then there exists a diminishing

hop that leads to a minimum vertex cover that consists of any one of the two frozen endpoints in it.

Proof. We prove the contrapositive of the theorem. We start with the reverse direction, which is
relatively simpler than the forward direction.

(«=) If there exists an S-diminishing hop, then S is not a minimum vertex cover.

Let S be a vertex cover of size % 4+ 1. Then the corresponding represents table R consists

of |—‘2/‘ + 1 frozen endpoints (and % — 1 removed endpoints). Given that we use cubic bridgeless
graphs, there is always a perfect matching, which means that there are % rows in the represents
table. This, by pigeonhole principle and by design requiring each row to have at least one frozen
endpoint, implies that exactly one row in the represents table consists of a duad (i.e., a row with
both its endpoints as frozen). Let u and v be the endpoints that form a duad.

Given that there exists an S-diminishing hop, we know that, by definition, the hop begins at the
row with the duad u and v. In turn, the diminishing hop decreases the number of frozen endpoints
in the table by one. The resultant frozen endpoints, one in each row, correspond to a vertex cover
S’. Hence, we know that either one of u or v will be in the vertex cover S’. Formally, given that
SN{u} # 0 and SN{v} # 0, it means that either S’ N {u} =0 or S’ N {v} = 0. For the remaining
Y1 _ 1 rows where one of its two endpoints (y and z) is frozen, we know that either SN {y} = 0
or SN {z} = (; this condition holds for S’ too. Here, if y € S, then it does not imply y € S’ (or
analogously, if z € S, then it does not imply z € S’). We only know for a fact that either one of the
two endpoints in a row will be in the vertex covers S, S’. We do not need to show which specific
endpoint will be in the vertex covers. Overall, we are sure that |S’| = |S| — 1. Therefore, because we
were able to find a vertex cover S’ of a size smaller than the size of the vertex cover S (|S’] < |S];
here, specifically |S’| = |S| — 1), S cannot be a minimum vertex cover. In fact, for this restricted
setting, we provide a stronger argument: vertex cover S’ of size % is indeed the minimum vertex
cover (Lemma . Hence, S cannot be a minimum vertex cover. We now prove the other direction.

34Given a cubic bridgeless graph, a restricted case is the case where ezactly one row in the corresponding represents
table consists of two frozen endpoints and a general case is the case where at least one row in the corresponding
represents table consists of two frozen endpoints.

36



1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

(=) If S is not a minimum vertex cover, then there exists an S-diminishing hop.
Let S be a vertex cover that is not a minimum vertex cover. Since S is not a minimum vertex
cover, there must exist at least one vertex cover S’ that is smaller than S, i.e., |S’| < |S|. In this

. . . v . .
restricted case, we know that the vertex cover S is of size % + 1, and the vertex cover S’ is of size

%. We now find the association between S and S’.

Take Symmetric Difference of vertices in S and S’: Let G’ be a subgraph of G such that
the vertices in G’ is a symmetric difference between the vertex covers S and S’. Formally,

G' = SAS' = (S\ S)U(S'\S)

This means that the vertices in the subgraph G’ are the vertices that are in the vertex cover S but
not in the vertex cover S’, or in S’ but not in S. Vertices that are in both S and S’ or that are
neither in S nor in S’ are omitted. The edges in subgraph G’ correspond to the edges in the graph
G that connect the vertices in G that correspond to the vertices in G'.

Properties of the subgraph G’:

1. The edges not in G’ but in G are covered by the vertices that are in both the vertex covers S
and S’. Hence, the edges in G’ are the edges that remain uncovered when the vertices only in
S’ or only in S are removed.

2. Each edge in the subgraph G’ is covered by vertices that correspond to the vertices only in
the vertex cover S. Simultaneously, each edge in the subgraph G’ is covered by vertices that
correspond to the vertices only in the vertex cover 5.

3. The number of vertices in the subgraph G’ is odd. Specifically, suppose there are m’ vertices
in the subgraph G’ that correspond to the vertices in the vertex cover S. In that case, there
are m’ — 1 vertices in the subgraph G’ that correspond to the vertices in the vertex cover S’.

4. The subgraph G’ can be a single vertex (singleton), a linear chain, a cycle, or a tree (or multiple
connected components of one or more of the four).

Relating S and S’ to subgraph G’: The vertices in G’ alternate between a vertex in S and a
vertex in S’. This is because for every edge e = (u,v) in subgraph G’, if the edge is covered by
vertex u in S, then it is covered by vertex v in S’, or vice versa. Vertices v and v cannot be in the
same vertex cover together. Otherwise, both the vertices would not be in the symmetric difference
of S and S’, and consequently, e = (u,v) would not be an edge in the subgraph G’. Additionally, it
is not possible that a vertex cover S (or S’) does not contain either of the vertices u and v because
if that is the case then S (or S’) will not be a vertex cover as edge e = (u,v) will not be covered.

Identifying a Diminishing Hop from the subgraph G’: This is a critical part. Until now,
the proof in the forward direction has only discussed graphs and not mentioned the represents table,
which is needed for diminishing hops. Hence, we first associate the vertex covers S and S’ for the
given graph G with the represents tables R and R’, respectively, that correspond to the given graph
G. More specifically, given a graph G and a vertex cover S, there is a represents table R such
that endpoints that correspond to vertices in the vertex cover S are frozen and the remainder are
removed. Similarly, given a graph G and a vertex cover S’, there is a represents table R’ such
that endpoints that correspond to vertices in the vertex cover S’ are frozen and the remainder are
removed. Next, in this restricted case, we know that one row of the represents table R consists of
a duad of frozen endpoints. Hence, remove the endpoint from the row with a duad such that the
removed endpoint is in the subgraph G’. The other endpoint in the duad will be frozen and must be
in both the vertex covers S and S’, and hence, not in the subgraph G’. Then, follow the sequence of
remove and freeze operations, i.e., the duadic hop w.r.t. S. Consequently, the table R will become
the same as table R’ such that the endpoints removed from R during the duadic hop correspond to
the vertices in G’ that are from the vertex cover S, and the endpoints frozen in R during the duadic
hop correspond to the vertices in G’ that are from the vertex cover S’. Hence, after the duadic hop
w.r.t. S, table R becomes equivalent to table R’. Finally, given that duadic hop w.r.t. S in the
represents table R leads to a smaller number of frozen endpoints, and in turn, smaller vertex cover,
it implies that the S-duadic hop is, by definition, an S-diminishing hop. Overall, because S is not
a minimum vertex cover, the given table R has an S-diminishing hop.

37



1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

In summary, the alternating vertices in the subgraph G’ (please refer to “Relating S and S’
to subgraph G'”) from the vertex cover S and S’ correspond to the removed and frozen endpoints
in the table R, respectively. Hence, the vertices in subgraph G’ correspond to the sequence of
endpoints that are removed and frozen, i.e., an S-duadic hop. The duadic hop is an S-diminishing
hop. Therefore, if S is not a minimum vertex cover, then there exists an S-diminishing hop.

This completes the other direction of the proof of correctness. In turn, it completes the overall
contrapositive proof that shows that S is the minimume-size vertex cover derivable from the represents
table R if and only if there is no S-diminishing hop in the represents table R. O

We established the relation between a vertex cover S and an S-diminishing hop in the represents
table R for the restricted case where the represents table R has exactly one duad, i.e., exactly one
row with two frozen endpoints. We now generalize this result to the case where the represents table
R has at least one duad, i.e., at least one row with two frozen endpoints. As for the implementation,
the steps we mentioned (starting at the end of page 32) remain the same. However, when more
than one row has a duad, Step 1 is repeated for each of the existing duads unless a duadic hop
beginning at each duad is guaranteed to not be a diminishing hop. The formalization on how
to ensure that no diminishing hop remains and its corresponding time complexity is discussed in
Section [5| (Algorithm) and Section [7| (Time Complexity), respectively. Here, we continue to focus
on establishing the relation between a minimum vertex cover S and S-diminishing hop.

Theorem 7 (Diminishing Hop and Vertex Cover). Given a cubic bridgeless graph G, a corresponding
represents table R and a vertex cover S (derived using R), S is the minimum-size vertex cover
derivable from the represents table R if and only if there is no S-diminishing hop in the represents
table R.

Proof. Before we begin the discussion of the proof, we share two observations:
1%

Observation 1. The size of the minimum vertex cover S will be between 7' and |V| -1, i.e.,
v
5] €[5 VI - 179
More specifically, when |S| = IL2‘7 there are two facts: (i) S is the minimum vertex cover because

the size of perfect matching is % (Lemma, and (ii) there is no duad, and in turn, there will be no

S-diminishing hop. Conversely, when there is no duad in a represents table R, and in turn, there is

no S-diminishing hop, it means that exactly \‘2/7| endpoints are frozen (one endpoint frozen for each

row), which implies that S is the minimum vertex cover.

Observation 2. When the given graph is a cubic bridgeless graph G, the minimum-size (smallest)
vertex cover derivable from the represents table R implies a minimum vertex cover.

We now discuss the main proof. We again prove the contrapositive of the theorem. This proof
has subtle variations from the proof for Theorem [6] which necessitates a detailed discussion. We
start with the reverse direction, which is relatively simpler than the forward direction. Also, recall
that m denotes the number of vertices in the given graph (m = |V]).

(<) If there exists an S-diminishing hop, then S is not a minimum vertex cover.

Let S be a vertex cover of size F 41 < |S| < m — 1. Then the corresponding represents table
R consists of x frozen endpoints (and remainder m — x removed endpoints) where z is an integer
such that 2 € [ + 1,m — 1]. Given that we use cubic bridgeless graphs, there is always a perfect
matching, which means that there are 7 rows in the represents table. This, by pigeonhole principle
and by design requiring each row to have at least one frozen endpoint, implies that at least one row
in the represents table R consists of a duad (i.e., a row with both its endpoints as frozen).

Let v and v be the endpoints that form a duad. Given that there exists an S-diminishing hop,
we know that, by definition, the hop begins at the row with a duad, say, row i containing endpoints
w and v. In turn, the diminishing hop decreases the number of frozen endpoints in the table by at
least one because one of the endpoints from u or v will be removed. The resultant frozen endpoints
in table R’ correspond to a vertex cover S’. Hence, we know that either one of u or v will be in the
vertex cover S’. Formally, given that SN{u} # @ and SN {v} # 0, it means that either S’ N{u} =0
or S’N{v} = . For the remaining % — 1 rows, we do not need to show which specific endpoints will
be in each of the vertex covers S and S’. It suffices to show that, by definition, the total number of

35The upper bound of |V| — 1 on the size of the minimum vertex cover is a relaxed one. We can prove a tighter
upper bound that can be provided by the use of representation scores. We omit a detailed analysis as it is not within
the scope of this paper.

36 A closed interval [a, b] denotes all integers in the range of integers a and b, both inclusive. Formally, [a, b] denotes
all integers x such that a < x <b.

38



1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

frozen endpoints in the remaining 4 — 1 rows of table R will be at least equal to the total number
of frozen endpoints in the remaining % — 1 rows of table R'. Hence, |S \ {u,v}| > [S"\ {u}| or
[S\ {u,v}| > |5\ {v}|- Consequently, |S| > |S’|. Therefore, because we were able to find a vertex
cover S’ of a size smaller than the size of the vertex cover S (|S’| < |S|), S cannot be a minimum
vertex cover. We now prove the other direction.

(=) If S is not a minimum vertex cover, then there exists an S-diminishing hop.

Let S be a vertex cover that is not a minimum vertex cover. Since .S is not a minimum vertex
cover, there must exist at least one vertex cover S’ that is smaller than S, i.e., |S'| < |S|. We now
find the association between S and 5.

Take Symmetric Difference of vertices in S and S’: Let G’ be a subgraph of G such that
the vertices in G’ is a symmetric difference between the vertex covers S and S’. Formally,

G' = SAS' = (S\ S)U(S'\S)

The edges in subgraph G’ correspond to the edges in the graph G that connect the vertices in G
that correspond to the vertices in G'.

Properties of the subgraph G’:

1. The edges not in G’ but in G are covered by the vertices that are in both the vertex covers S
and S’. Hence, the edges in G’ are the edges that remain uncovered when the vertices only in
S’ or only in S are removed.

2. Each edge in the subgraph G’ is covered by vertices that correspond to the vertices only in
the vertex cover S. Simultaneously, each edge in the subgraph G’ is covered by vertices that
correspond to the vertices only in the vertex cover S’.

3. The subgraph G’ can be a single vertex (singleton), a linear chain, a cycle, or a tree (or multiple
connected components of one or more of the four, or a bipartite graph).

Relating S and S’ to G’: If the graph G’ is a singleton or consists of a singleton component,
then that single vertex must come from the vertex cover S. For the remaining cases, the vertices
in (each connected component of) G’ alternate between a vertex in S and a vertex in S’. This is
because for every edge e = (u,v) in subgraph G, if the edge is covered by vertex u in S, then it
is covered by vertex v in S’, or vice versa. Vertices u and v cannot be in the same vertex cover
together. Additionally, a vertex cover S (or S’) must contain either of the vertices u and v.

Identifying a Diminishing Hop from the subgraph G’: Until now, this proof in the forward
direction discussed graphs and did not mention the represents table, which is needed for diminishing
hops. Hence, we first associate the vertex covers S and S’ for the given graph G with the represents
tables R and R’, respectively, that correspond to the given graph G. More specifically, given a graph
G and a vertex cover S, there is a represents table R such that endpoints that correspond to vertices
in the vertex cover S are frozen and the remainder are removed. Similarly, there is a represents table
R for a given graph G and a vertex cover S’. Next, we discuss the existence of an S-diminishing
hop in each of the four types of graph G':

e Singleton: A singleton in graph G’ consists of a vertex u from the vertex cover S. Because
there is no edge connected to this single vertex in G’, removing u from S keeps the vertex cover
intact and results in a smaller vertex cover S’. Correspondingly, there exists an S-diminishing
hop that removes the endpoint u from the duad in the represents table R, which results in a
represents table R’ with fewer frozen endpoints that correspond to the vertex cover S’.

For the remaining three graph types, each a special case of a bipartite graph, we make the
following common observation (that holds for a general bipartite graph): we know that at least
one row of the represents table R consists of a duad of frozen endpoints. Hence, to perform an
S-diminishing hop, remove the endpoint from a row with a duad such that (i) the removed endpoint
is in the subgraph G’ and (ii) the other endpoint in the duad is frozen and must be in both the
vertex covers S and S/, and hence, not in the subgraph G’. Then, follow the sequence of remove
and freeze operations, i.e., the duadic hop w.r.t. S. For a singleton, we discussed that the hopping
stops after the removal of one endpoint. We now discuss the cases for the remaining graph types:

39



1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

e Cycle: When there is an even cycle consisting of ¢ vertices, then an S-diminishing hop cannot
be carried on the even cycle. The cycle consists of § vertices each from the vertex covers S
and S’. Hence, a hop simply changes the vertices but does not affect the count. Additionally,
an even cycle can only exist with another component in the graph G’. Without another
component, the existence of only an even cycle implies that the vertex covers S and S’ are of

the same size, which contradicts our assumption. Hence, another component in G’ must exist.

There is never an odd cycle in graph G’. Assume that there is an odd cycle in G’. This implies
that the cycle consists of at least one vertex more from the vertex cover S than from the vertex
cover S’. In turn, this means that there exists an edge that connects two vertices from the
same vertex cover S (or S’). However, this is not possible because G’ is a symmetric difference
of vertices in S and S’, and hence, there can be no edge in G’ that connects two vertices from
S or S’. This contradicts our assumption about the presence of an odd cycle in G’.

e Linear Chain: A linear chain of even length cannot exist by itself without another component
in G’ for reasons that are the same as even cycles. Hence, we focus our discussion on linear
chains of odd length. When the graph G’ is (has) a linear chain of odd length, the linear chain
consists of at least one vertex more from the vertex cover S than from the vertex cover S’.
Hence, an S-diminishing hop can begin at any row with a duad in the represents table R such
that one of the endpoints in the duad corresponds to a vertex from S in the linear chain of G'.
Subsequently, the table R will become the same as table R’ such that the endpoints removed
from R during the S-diminishing hop correspond to the vertices in G’ that are from the vertex
cover S, and the endpoints frozen in R correspond to the vertices from the vertex cover S’.
Finally, the S-diminishing hop in the represents table R leads to a smaller number of frozen
endpoints, and in turn, a smaller vertex cover. Therefore, because S is not a minimum vertex
cover, the given table R has an S-diminishing hop.

e Tree: When G’ is (has) a tree, it must be a binary tree because it is derived from a cubic
graph G. When the length of the longest path between each pair of leaf vertices is even, it
results in the same case as an even linear chain. When there is an odd path, an S-diminishing
hop begins at a row with a duad in the table R such that one endpoint in the duad corresponds
to a vertex from S in G’. Subsequently, the table R becomes equivalent to R’ such that the
endpoints removed from R correspond to the vertices in G’ from the vertex cover S, and the
endpoints frozen correspond to the vertices in G’ from the vertex cover S’. More generally,
because G’ must be bipartite, this discussion (regarding an S-diminishing hop beginning at a
row with a duad in the R) holds for the general case when G’ is a bipartite graph.

In summary, for each graph type, the alternating vertices in the subgraph G’ from the vertex
cover S and S’ correspond to the removed and frozen endpoints in the table R, respectively. Hence,
the vertices in subgraph G’ correspond to the sequence of endpoints that are removed and frozen, i.e.,
an S-duadic hop. The duadic hop is an S-diminishing hop because the number of endpoints removed
is greater than the number of endpoints frozen (across all components when even components are
present). Therefore, when S is not a minimum vertex cover, there exists an S-diminishing hop.

This completes the other direction of the proof of correctness. In turn, it completes the overall
contrapositive proof that shows that S is the minimum-size vertex cover derivable from the represents
table R if and only if there is no S-diminishing hop in the represents table R. O

Theorem [7]is designed to hold for a cubic bridgeless graph G, which always consists of a perfect
matching (Theorem . However, if we are not given a cubic bridgeless graph, then the graph may
not consist of a perfect matching. Consequently, at least one vertex won’t be listed as an endpoint
in the represents table R. Hence, the theorem that guarantees a minimum vertex cover does not
hold anymore. However, by design, we can generalize this result (for future use) by stating a new
corollary, which states that the vertex cover derived from the represents table R is the minimum-size
derivable from the endpoints listed in the represents table R. In other words, the vertex cover is the
minimum-size derivable from subset of vertices that are the endpoints of the edges in the maximum
matching found using the Blossom Algorithm during Phase I of the algorithm.

Corollary 1. Given a graph G, a corresponding represents table R and a vertex cover S (derived
using R), S is the minimum-size vertex cover derivable from the endpoints in represents table R if
and only if there is no S-diminishing hop in the represents table R.

Proof. A cubic bridgeless graph always consists of a perfect matching (Theorem . Hence, all
the vertices of a given graph are always listed as endpoints in the represents table R. Therefore,

40



1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

Theorem [7] guaranteed a minimum vertex cover. In other words, by design, an S-diminishing hop
finds the smallest vertex cover derivable from the endpoints in the represents table R. This implies
a minimum vertex cover when there exists a perfect matching, such as in a cubic bridgeless graph.
Therefore, when an arbitrary graph is given, this “generalized” corollary follows from Theorem[7] [

4.4 Summary

The algorithm we discovered is a three-phase algorithm, which, when given a cubic bridgeless graph
G and a non-negative integer k, returns “Yes” if there is a vertex cover S of size at most k, and
“No” otherwise. The three phases are implemented sequentially (Figure :

I Find a Perfect Matching: Use the Blossom Algorithm to find a perfect matching.

IT Populate Represents Table: Create a BFS tree and use it with the perfect matching to
implement an augmented version of the 2-approximation algorithm for the vertex cover problem
to populate a novel data structure called the “represents table”. We also discussed operations
and properties of the represents table.

IIT Diminishing Hops: The input to the third phase is the data structure represents table.
Foremost, assign a weighted number to each vertex (also known as an endpoint) in the table,
called the representation score (, which captures how well an endpoint is represented in the
table. Next, use the representation score  to freeze or remove each endpoint in the represents
table. The frozen endpoints correspond to a vertex cover. Finally, motivated by the use of
augmenting paths (a specific case of an alternating path) w.r.t. a given matching to find a
maximum matching, the third phase introduces diminishing hops (a specific case of a duadic
hop) w.r.t. a given vertex cover to find a minimum vertex cover. A diminishing hop differs from
the Vertex Cover Reconfiguration problem because we do not (i) stipulate that each remove /
freeze operation of a hop should result in a vertex cover or (ii) bound the number of operations.

Overall, the combination of all these phases implies that we get an unconditional deterministic
polynomial-time algorithm for the vertex cover problem on cubic bridgeless graphs.

5 Algorithm

We now present the core contribution of this paper, an algorithm to solve the VC — CBG problem. In
the algorithm, all ties are broken and all ordering (sorting) of vertices is done based on lexicographic
ordering unless noted otherwise. The ordering does not impact the correctness but ensures that for
the same input, the output remains the same.

Algorithm 1: VERTEX_COVER(G, k)

Data: Cubic Bridgeless Graph G = (V, E)
non-negative integer k
Result: returns Yes if there is a Vertex Cover S of size at most k, No otherwise

=

Vs = lexicographically sorted set of vertices

// PHASE I
M = a set of edges in a perfect matching found using the Blossom Algorithm [Edm65)
if k¥ < |M]| then
‘ return No
end

o vtk N

3

// PHASE II
8: R = POPULATE REPRESENTS_TABLE(G, M, V;)

9: // PHASE III

10: S = DIMINISHING,HOPJ:’HASE(R)
11: if |S| < k then

12: ‘ return Yes

13: end

14: return No

41



Algorithm 2: POPULATE REPRESENTS_TABLE(G, M, V)

Data: Cubic Bridgeless Graph G = (V, E)
Edges in Perfect Matching M
Lexicographically Sorted Vertices Vg

Result: returns Represents Table R

: T = an array of arrays storing sorted vertices at each level of a breadth-first search tree
seeded on the first vertex in Vg, and each vertex in T is marked unvisited // Table

2: R = a four-column table, Represents Table, that stores the endpoints of an edge selected
during the for loop discussed below and the corresponding vertices each endpoint is
connected to through an edge // Definition [14], Table

3: // The following loop traverses the BFS-tree table top-down

4: for each level in T do

5: for each unvisited vertex u in level do

6: if there exists an edge that connects vertexr u with another vertex on the same level

and the edge is in M then
‘ select the edge

else if there exists an edge that connects vertex u with another vertex on the next
level and the edge is in M then

o: | select the edge

10: end

11: Mark the two endpoints of the selected edge as visited in T’

12: Insert a new row after the last row in R: the two endpoints of the selected edge and
the respective vertices each endpoint is connected to through an edge

13: Remove from graph G the selected edge and all the edges that are connected to the
two endpoints

14: If any vertex becomes edgeless in G, mark the vertex as visited in T’

15: end

16: end

17: return R

Algorithm 3: DIMINISHING_HOP_PHASE(R)

© X 3T R

Data: Represents Table R
Result: returns a Minimum Vertex Cover S

:S=0

Augment the represents table R with two new columns corresponding to the two endpoints
in each row

For each endpoint « in the represents table R, insert into the new columns of the table a
representation score ( such that {, = —o0

R = COMPUTE_REPRESENTATION_SCORE(R)

R, S = VERTEX_ELIMINATION(R, S)

for each integer a in [1, 7] do
| R, S = DIMINISHING_HOPS(R, S)

end

return S

42



Algorithm 4: COMPUTE REPRESENTATION SCORE(R)

N
B W N = O

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:
27:

© ® N ok ®hE

Data: Represents Table R
Result: returns Represents Table R with updated representation scores ¢

// The following loop traverses through the table R top-down
for each row in R do

// The following loop executes exactly twice

for each endpoint u in row do

if u is frozen then

Cu =-1

continue

else if u is removed then

Cu =-1

continue

else

Cu =0

for each row; in R that is above row do
z, y = two endpoints in row;

// L, denotes the list of endpoints that the endpoint z in row,; represents
if vertex uw € L, then

| Gu = Cu + max(0,¢,) + 1

else if verter u € L, then

‘ Cu = Gu + maX(OaC:c) +1

else

‘ do nothing

end

end

end

end
end
return R

Algorithm 5: VERTEX_ELIMINATION(R, S)

10:
11:
12:
13:
14:

15:
16:
17:

© ® 3D ok e hF

Data: Represents Table R
Vertex Cover S
Result: returns updated Represents Table R, Vertex Cover S

// The following loop traverses through the table R bottom-up
for each row in R do
R = COMPUTE REPRESENTATION_SCORE(R)
if both endpoints in row are either frozen or removed then
‘ continue
else if endpoint u in row remains and endpoint v in row is frozen then
‘ R, S = FREEZE_AND REMOVE(R, S, &, u) // @ denotes a null value
else
// at this point, both endpoints w and v in row are neither frozen nor removed, and
represent exactly one endpoint, namely each other
if ¢, > ¢, then
| R, S = FREEZE_AND REMOVE(R, S, u, v)
else
‘ R, S = FREEZE_AND_REMOVE(R, S, v, u)
end
end
end
return R, S

43



Algorithm 6: FREEZE_AND REMOVE(R, S, ¢, w)

© 00 N O ok W N -

P S G Gy S
o N W N R O

Data: Represents Table R
Vertex Cover S
Endpoint to be Frozen v
Endpoint to be Removed w
Result: returns updated Represents Table R, Vertex Cover S

// Freeze Operation of Represents Table

Freeze endpoint ¢ in R

Append endpoint 3 to S

Set the represents list L, of endpoint % in R to null

Delist endpoint v from every represents list in R

// Remove Operation of Represents Table

Remove endpoint w from R

Remove endpoint w from S (if present)

for each non-frozen and unremoved endpoint u in R such that w € L,, do
| R, S = FREEZE_AND_REMOVE(R, S, u, ©)

: end
: for each non-frozen and unremoved endpoint « in L, do

| R, S = FREEZE_AND_REMOVE(R, S, u, 9)

: end
: Set the represents list L,, of endpoint w in R to null
: return R, S

Algorithm 7: DIMINISHING_HOPS(R, S)

NN N NMNNDNNDNRR R B KRR < 2
PN D QRN HOS O ® N TR WD

S B A S v

Data: Represents Table R
Vertex Cover S
Result: returns a diminished or the same Represents Table R and
a smaller or same Vertex Cover S

A=0//an array of endpoints (vertices) visited during diminishing hops
Raiminished=R
Sdiminished:S
// The loop traverses through the table R top-down
for each row in R do
Roriginal:R
Soriginal:S
)\original:A
// a duadic hop exists only if both endpoints w and v in row are frozen, and form a duad
if both endpoints in row are frozen then
for each endpoint u in row do
R, S, A= DUADICJ‘IDP(R, S, I, u, )\)
// this holds if the number of vertices removed > number of vertices frozen
if |S‘ < |Sdiminished| then
Raiminishea=1
Sdiminished:S
Adiminished=A\
end
R:Roriginal
S:Soriginal
)‘:Aom’ginal
end
R=Raiminished
S:Sdiminished
A=Adiminished
end
: end
: return R, S

44



1556

1557

1558

1559

1560

1561

1562

1563

Algorithm 8: DUADIC_HOP(R, S, v, w, \)

BB W oW W W W oW W W W ONNNNN N N NN R B R OH R R R ke
ES 9 ® IS 0L HHEO DS B IST L EINESE RIS a R R RO

© % 3T ke hE

Data: Represents Table R
Vertex Cover S
Endpoint to be Frozen ¢
Endpoint to be Removed w
List of Visited Endpoints A
Result: returns updated Represents Table R, Vertex Cover S, Visited Endpoint List A

// During each execution of this algorithm, either ¢y =& or w =9

if w #  then
if w € A then
‘ return R, S, A
end
Add w to A
Remove endpoint w from R
Remove endpoint w from S
Q =07/ a queue storing the endpoints to be frozen
for each endpoint v in L, do
if u ¢ A then
Add u to A
if u ¢ S then
‘ Q=QU {u} // enqueue endpoint u
end
end
end
for each endpoint v in R such that w € L, do
if u ¢ X\ then
Add u to A
if u ¢ S then
| Q=QU{u}
end
end
end
for each endpoint u in () do
QR=0\ {’LL} // dequeue endpoint u
R, S, A\ = DUADIC_HOP(R, S, u, @, \)
end

: end

: // the following condition will be true only when an endpoint has been removed

: if ¢ # @ then

Freeze endpoint ¥ in R
Append endpoint 9 to S
// the following condition is equivalent to checking for the existence of a duad
u=the other endpoint that is in the same row of R as v
if u € S then
| R, S, A\ =DUADICHOP(R, S, @, u, \)
end

: end
: return R, S, A

6

Proof of Correctness

We proved the relation between diminishing hops and minimum vertex cover in Section 4} Hence,
showing that the algorithm successfully searches for diminishing hops, which, combined with already
proven results, implies the correctness of the algorithm. Overall, we prove the following theorem:

Theorem 8. Algorithm[1] returns Yes if and only if the given instance of VC — CBG is a Yes instance.

More specifically, we prove the theorem through a sequence of lemmas. Foremost, in the reverse

direction, we have the following lemma:

45



1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

Lemma 4. If the given instance of VC — CBG is a Yes instance, then the Algorithm[1] returns Yes.

Proof. When the given instance of VC — CBG is a Yes instance, it implies that there is a vertex cover
S of size at most & (|S| < k). Additionally, it implies that & > %. This is because a cubic bridgeless
graph always consists of a perfect matching (Theorem 7 which means the size of a maximum
matching M (equivalently, a perfect matching for our paper) is 5. Therefore, by Lemma [I, we
know that the size of a minimum vertex cover S’ is S| > |M|, which means [S’| > %. Hence, each
vertex cover S in a set of vertex covers S, S € S, will be of size |S| > . Consequently, because

k> |S| and \5|z%

we know that
>

-2

Therefore, Line 5 of Algorithm [I] cannot return No.

Next, by design, we know that Line 5 of Algorithm [3] consists of a vertex cover S. This is because
the operations of the represents table R are designed to ensure that the frozen endpoints in table R
correspond to a vertex cover (Theorem . Finally, at the end of the execution of the loop in Line
6 of Algorithm |3] the final vertex cover S in Line 7 of Algorithm [3| consists of a minimum vertex
cover because there is no S-diminishing hop in the given represents table (Theorem [7). This will be
returned by Line 9 of Algorithm [3] This implies that no vertex smaller than S can exist. Therefore,
if the given instance of VC — CBG is a Yes instance, then each vertex cover S’ € S that can be a
Yes instance must be of size greater than or equal to the minimum vertex cover and less than or
equal to k. Formally, |S| < |S’| < k. Hence, the condition in Line 11 of Algorithm [1| must be true
(IS] < k), which means Line 12 of Algorithm [1|must return Yes. The execution of Algorithm [1| will
never reach Line 14, and hence, it cannot return No.

Next, in the forward direction, we have the following lemma:
Lemma 5. If the Algorithm[]] returns Yes, then the given instance of VC — CBG is a Yes instance.

Proof. If the Algorithm [1| returns Yes, then it can do so only if Line 12 of Algorithm [1|returns Yes.
This implies that Line 5 of Algorithm [I] cannot return No. Hence, the value of non-negative integer
k must be greater than the size of the perfect matching M found in Line 3 of Algorithm [T} formally,
k > . This also implies that Lines 8 and 10 of Algorithm [I| must be executed, which are the two
main phases of the algorithm. We first discuss the execution of Line 8.

Line 8 of Algorithm [1| (Populate Represents Table): The Line 8 of Algorithm (1| invokes
Algorithm 2l The output of Algorithm [2]is a data structure called the represents table R. Line 12
of Algorithm [2| inserts a new row to the table such that the endpoints of an edge selected in Lines
7 or 9 are listed. Because the algorithm only selects the edges that are in the perfect matching M
(Lines 6 or 8), it implies that the algorithm enlists endpoints of edges in a matching, which means
the endpoints form a vertex cover (Lemma . More specifically, in our case, the matching is a
perfect matching, and each perfect matching is a maximum matching, which in turn is a maximal
matching (Lemma . Hence, each vertex of graph G is listed as an endpoint in table R, which
trivially forms a vertex cover (Property . The Lines 1, 13, and 14 of Algorithm [2| are important
for the next phase as they ensure the table R has certain properties (Properties . The key
output of Algorithm [2]is that the endpoints of the resultant represents table R form a vertex cover.

Line 10 of Algorithm [1| (Diminishing Hop Phase): The Line 10 of Algorithm [1| invokes
Algorithm [3] with the represents table R as its input. The first three lines of Algorithm [3] are
initialization steps that are consequential for the next lines. Hence, we do not discuss them. Line 4
of Algorithm [3| invokes Algorithm || (Compute Representation Score). Algorithm [4| assigns a score
to each endpoint. It does not alter the structure of the table or its endpoints and hence, it does not
need further discussion. Next, Line 5 of Algorithm [3|invokes Algorithm

e Algorithm [5| (Vertex Elimination): The overarching goal of this algorithm is to freeze or
remove each endpoint in the represents table R using the representation score such that the
frozen endpoints correspond to a vertex cover S such that S C V (Property 4, Theorem [4)f°']

37We leave the following discussion to future work: (i) how is the representation score used to decide whether to
freeze or remove an endpoint and (ii) the guarantees on the upper bound of the number of endpoints being frozen. In
particular, guarantees on the upper bound can be used to make the diminishing hops phase more efficient.

46



1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

More specifically, Algorithm [5| traverses through the represents table R bottom-up. For each
row, it recomputes the representation score by invoking Algorithm [l Then, it carries out a
sequence of freeze and remove operations while adhering to the properties of the represents
table R. If both endpoints in a row of the table are frozen, then the algorithm does nothing.
By design, both the endpoints in a row cannot be removed. If one of the endpoints in a row
is frozen (and the other is neither frozen nor removed), then the other is removed (Line 7 of
Algorithm [f] invokes Algorithm [6] (Freeze and Remove)). Next, if neither of the endpoints in
a row is frozen or removed, one endpoint is frozen and the other one is removed based on
the representation score (Line 11 or 13 of Algorithm [5| invokes Algorithm |§| as appropriate).
Finally, the case when one endpoint is removed and the other is neither frozen nor removed
cannot happen (by design). Hence, Algorithm [5[ does not need to cover that case.

Algorithm [6] is specifically designed to freeze or remove an endpoint. When an endpoint 1)
needs to be frozen, Algorithm |§| freezes the endpoint in table R (Line 2), adds it to the vertex
cover S (Line 3), and updates the corresponding represents lists (Lines 4 and 5). Lines 4 and
5 set the represents list of endpoint 1 to null and remove the endpoint v from the represents
lists of other endpoints, respectively. This operation denotes that the vertex 1 in the vertex
cover S covers each edge that connects v to its neighbors. Next, when an endpoint w needs
to be removed, Algorithm |§| removes the endpoint from table R (Line 7), removes it from the
vertex cover S (if present; Line 8), and freezes each endpoint it represents or it is represented
by (Lines 9 to 14). The last set of operations denotes that the vertex w is not in the vertex
cover S, and hence, each of its neighbors must be in S to cover each edge connected to w.

In summary, Algorithm [5} through Algorithm [6] carries out a deterministic sequence of freeze
and remove operations such that each endpoint in the represents table R is either frozen or
removed. Consequently, the frozen endpoints correspond to the vertices in a vertex cover S.

Finally, Line 7 of Algorithm [3]invokes Algorithm [7] for a total of % times. Each iteration of an
S-diminishing hop corresponds to one row of the represents table R.

2

e Algorithm [7| (Diminishing Hops): There are three aspects to be proven for Algorithm

(i) establish the relation between a vertex cover S and an S-diminishing hop, (ii) prove that the
algorithm performs an S-diminishing hop when one exists, and (iii) % calls to the algorithm
ensures that there exists is no S-diminishing hop when it terminates. Theorem [7| already
established that a vertex cover S is minimum if and only if there is no S-diminishing hop.
Hence, it remains to be discussed that Algorithm [7]is an algorithm that uses S-duadic hops
to search and perform an S-diminishing hop in the represents table R. Hence, when an S-
diminishing hop does not exist, S is a minimum vertex cover.

Lemma 6. Given a represents table R where each endpoint is either frozen or removed and
a vertex cover S that corresponds to the frozen endpoints in the table R, Algorithm [7 is an
algorithm to perform an S-diminishing hop if it exists.

Proof. When Line 7 of Algorithm [3] invokes Algorithm [7}, input to Algorithm [7]is a represents
table A>¥] where each endpoint is either frozen or removed and a vertex cover SP% Note that
during each iteration, the updated values of represents table R and the vertex cover S are
passed. Line 1 of Algorithm [7] initializes an empty list that will store each endpoint that is
visited during a hop. Lines 2 and 3 keep a record of the represents table R with the smallest
number of frozen endpoints and of the smallest vertex cover S, respectively, during a given
iteration. Line 5 ensures a top-down row-wise traversal of the represents table R. Lines 6 to 8
store the concerned data as it was when an iteration of the loop begins. This is needed because
an S-duadic hop removes each of the two endpoints turn-wise to assess which one leads to an
S-diminishing hop. Line 10 ensures the presence of a duad without which an S-duadic hop is
not needed. Consequently, Line 11 does an S-duadic hop for each of the endpoints in a duad.
Line 12 invokes Algorithm [8| (Duadic Hop). Line 14 assesses whether the vertex cover returned
by Algorithm [§] (Duadic Hop) is smaller than the smallest one, and if so, updates the relevant
variables (Lines 15-17). Lines 19 to 21 restore the relevant variables for the other endpoint of
the duad to undergo a duadic hop. Lines 23 to 25 ensure that after each endpoint of the duad
is traversed, the smallest vertex cover is used as input for the next row.

38The represents list L,, for each endpoint u in table R is given in the table such that no endpoint is removed from
any list. In other words, the represents list of each endpoint is the same as it was during the output of Algorithm
This information is needed to hop to different rows.

39During each iteration, the values of R and S that are provided as inputs may be different.

47



1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

Next, we mentioned that Line 12 of Algorithmm invokes Algorithm (Duadic Hop). Its inputs
are the represents table R, a vertex cover S, an endpoint to be frozen v, an endpoint to be
removed w, and a list of visited endpoints. By design, when Algorithm [§] is invoked, either
or w will be null. An S-duadic hop always begins with the removal of an endpoint, as evident
from Line 12 of Algorithm[7] Foremost, an endpoint w can be removed only if it is not visited
(Line 3). If the endpoint w is marked as visited, it implies it was frozen during the removal of
another endpoint in another row. If not visited, w is now marked as visited (Line 6), removed
from represents table R (Line 7), and removed from the vertex cover S (Line 8). A queue is
maintained to ensure that for each endpoint w that is removed, the endpoints that correspond
to the neighboring vertices in the graph are marked as visited (if not already done so) and
added to the queue if not already frozen (Lines 10 to 25). For each endpoint u in the queue,
we hop from the row containing w to the row containing u, which needs to be frozen (Lines 26
to 29). An endpoint ¢ is frozen in table R (Line 33) and added to the vertex cover S (Line
34) only when an endpoint was removed earlier. Next, if the neighboring endpoint of ¢ is in
the vertex cover, it needs to be removed (if possible). Finally, an S-duadic hop will terminate
only when removing or freezing an endpoint in a duad or in another row, respectively, is
not possible. If the size of S decreases from the time when Line 12 of Algorithm [7] invoked
Algorithm [8] then an S-duadic hop is an S-diminishing hop. O

We proved that Algorithm [7 along with Algorithm [§ performs an S-diminishing hop when
one exists. Next, we prove that % calls by Algorithm [3| to Algorithm |Z| guarantees that there
is no S-diminishing hop when the loop in Algorithm [3| terminates.

Lemma 7. Given a represents table R where each endpoint is either frozen or removed and
a vertex cover S that corresponds to the frozen endpoints in the table R, it takes at most m?
S-duadic hops to ensure that there is no S-diminishing hop.

Proof. The proof for this lemma is divided into two parts: (i) to show the algorithm executes at
most m? S-duadic hops, and (ii) an S-diminishing hop cannot exist after at most m? S-duadic
hops.

(i) Line 7 of Algorithm [3| invokes Algorithm [7] 2 times. Next, in the worst case, during each
of the 7 iterations, there can be at most & — 1 rows with a duad. Therefore, Line 12 of
Algorithm |7|invokes Algorithm [8{at most 3 -2- (% —1) ~ m? times. Finally, Algorithm [8| can
call itself at most m times, which is not considered in this analysis because the recursive calls
are part of an ongoing S-duadic hop, but not a new hop in itself. Hence, we showed that the

algorithm executes at most m? S-duadic hops.

(i) It remains to be proven that an S-diminishing hop cannot exist after at most m? S-duadic
hops{ﬂ Firstly, we know that at least one of the 2- (% —1) S-duadic hops invoked in Line 12 of
Algorithm[7]is an S-diminishing hop, assuming an S-diminishing hop exists. More specifically,
if there exists an S-diminishing hop, then at least one of the endpoints in at least one of the
rows with a duad will be removed such that the remaining frozen endpoints in the represents
table R still form a vertex cover. Removal of such an endpoint during an S-duadic hop implies
an S-diminishing hop. Next, in a given represents table R, there can be at most 5 — 1 rows
consisting of a duad. Hence, each time Line 7 of Algorithm [3] invokes Algorithm [7]} at least
one row of the represents table R will become duad-less, again assuming an S-diminishing
hop exists. In other words, each S-diminishing hop implies that the number of duads in the
represents table R is decreasing (by at least one in the worst case)lﬂ Therefore, in the worst
case, after at most 7 calls to Algorithm [7|and consequently, at most m? S-duadic hops, there
cannot be an S-diminishing hop.

Overall, we showed that after 3 iterations of Lines 6 to 8 in Algorithm |3} there cannot exist

an S-diminishing hop in the represents table R.

40The idea behind having % iterations of Algorithm [7|is inspired by bubble sort. More specifically, in bubble sort,
after each iteration, an element’s position is fixed. Similarly, after each S-diminishing hop, the number of rows with
a duad in the represents table R decreases by at least one.

41 Alternative explanation: Line 7 of Algorithm [3|invokes Algorithmlﬂ % times. Each iteration consists of 2- (% —1)
S-duadic hops invoked in Line 12 of Algorithm [7{] Moreover, during each iteration, if an S-diminishing hop exists,
then the number of duads goes down by at least one. Consequently, given that a given represents table R can have
at most % — 1 rows with a duad to begin with, the % invokes to Algorithm [7| by Algorithm [3| guarantees that an
S-diminishing hop does not exist because either (i) the represents table R will have no rows with a duad or (ii) no
possible S-duadic hop reduces the number of frozen endpoints in the represents table R.

48



1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

In summary, we proved that Algorithm along with Algorithm is an algorithm (i) to perform
an S-diminishing hop (Lemma @ when one exists, (ii) that guarantees that no S-diminishing
hop exists when it terminates after performing at most m? S-duadic hops across 5 calls to
Algorithm [7] by Algorithm [3] (Lemmal[7)), and (iii) that is based on the understanding that the

non-existence of an S-diminishing hop means that S is a minimum vertex cover (Theorem .

After the termination of the loop in Line 8 of Algorithm [3] Line 9 of the algorithm returns a
minimum vertex cover S to Line 10 of Algorithm [I] because there will be no S-diminishing hop
(Lemma @ Lemma |7}, Theorem . This discussion effectively completes the proof of this lemma.

In summary, recall that we posited that for the Algorithm [I| to return Yes, Lines 8 and 10 of
Algorithm [I] must be executed. We subsequently discussed the execution of these lines. We proved
that for frozen endpoints in the resultant represents table R and the corresponding vertex cover .S,
there exists no S-diminishing hop after the execution of Line 10 of Algorithm [l This implies that
S is a minimum vertex cover (Theorem . Subsequently, when Line 12 of Algorithm [1{returns Yes,
the given instance of VC — CBG must be a Yes instance. Hence, if Algorithm [T returns Yes, then the
given instance of VC — CBG is a Yes instance. This completes the proof in the forward direction. [

The proofs of Lemma[d and Lemma 5] complete both directions of the proof of correctness. Hence,
this completes the proof of Theorem

7 Time Complexity Analysis

In this section, we discuss the time complexity of the algorithm (Table Table Table

Table Table Table Table Table . Each table corresponds to each algorithm
(ranging from Algorithm (1] to Algorithm [8). m denotes the number of vertices V and n denotes the

number of edges E. However, for cubic graphs, we know that n = 22* = O(m). Hence, for simplicity
and in line with the literature, we compute time complexity with respect to m.

In each table, we give the complexity of each line (each operation), the complexity of the loop
(complexity of line multiplied by the number of loop iterations) and the dominant complexity. For
convenience, the beginning of a loop, specifically the number of loop iterations, is highlighted (e.g.,
Line 4 in Table . Each statement within the loop is prefixed with a pointer (»). In the case of
nested loops, an additional pointer (1>, >) is used. Whenever an algorithm calls another algorithm,
the latter’s worst-case time complexity becomes the former’s line complexity, which is denoted by

square brackets ([Table z]; e.g., Line 8 in Table[14)).
Theorem 9. The asymptotic running time of Algom'thm is O(m?®).

Proof. Line 10 in Algorithm [I] dominates the complexity of all other lines as shown in Table This
dominant complexity is O(m?). Hence, the time complexity of the entire algorithm is O(m®). O

Time Complexity of Algorithms with Recursive Calls: We elaborate upon the time com-
plexity of Algorithm |§| (Table and Algorithm (8] (Table because the time complexity of the
remainder of the algorithms is self-explanatory from the respective tables. Both of these algorithms
consist of recursive calls that require discussion.

e Algorithm[f] has recursive calls in line 10 and line 13. However, by design, Algorithm [f]executes
at most m times. This is because each time it is executed, at least one vertex is either removed
or frozen. Hence, after at most m calls, no unfrozen or unremoved vertex will exist. Each call
takes O(m) time. Overall, in the worst case, the height of the recursion tree is m and each
level has one subproblem taking O(m). Thus, total complexity is O(m)-O(m) =O(m?).

e Algorithm [§] has recursive calls in line 28 and line 38. Again, by design, Algorithm [§] executes
at most m times. This is because each time the algorithm is executed, at least one endpoint is
marked as visited using the variable A. Hence, in the worst case, if one endpoint is marked as
visited during each call, then there can be at most m calls. After this, no unvisited endpoint
will exist. Each call takes O(m?) time. Thus, total complexity is O(m)-O(m?) =0(m?).
Notably, during each call, the algorithm never executes both, line 28 and line 38, together.
This is by design as each hop within an S-duadic hop can either result in freezing of an endpoint
or removal of an endpoint.

49



’ Line Number H Line complexity \ Loop complexity \ Dominant complexity ‘

1 O(m -logm) - O(m -logm)
2 - - O(m -logm)
3 O(m?) - O(m?)
4 0(1) - O(m?)
5 o) - O(m?)
6 - - O(m?)
7 - - O(m?)
8 O(m?®) [Table[15] | - O(m?)
9 - - O(m?)
10 O(md) [Table - O(m®)
11 o(1) - O(m®)
12 O(1) - O(m®)
13 - - O(m?)
14 0(1) - O(m")

Table 14: Line wise time complexity of Algorithm W.lo.g., we assume the average length of
vertex names is a constant and hence, ignore it in time complexity analysis of Line 1.

] Line Number H

Line complexity \

Loop complexity \

Dominant complexity ‘

1 O(m+m) - O(m)
2 o(1) - O(m)
3 - - O(m)
4 o0(1) O(m) O(m)
5 o) > O(m?) O(m?)
6 O(m) > > O(m?) O(m?)
7 0(1) > > O(m?) O(m?)
8 O(m) > > O(m?) O(m?)
9 o(1) » > O(m?) O(m?)
10 - - O(m?)
11 O(m) > > O(m3) O(m?)
12 o(1) > > O(m?) O(m?)
13 O(m) > > O(m?) O(m?)
14 O(m) > > O(m?) O(m?)
15 - ; O(m?)
16 - - O(m?)
17 o) - O(m?)

Table 15: Line wise time complexity of Algorithm A highlight denotes the number of loop
iterations. A pointer (») denotes that a line is within a loop. An additional pointer (I>) denotes a
nested loop. Note that the BFS-tree is traversed at most m times (by design) but asymptotically it
may traverse m? times. Hence, we keep the latter time complexity as it does not impact the overall
complexity of the algorithm.

] Line Number H Line complexity \ Loop complexity \ Dominant complexity \

1 o) - o(1)

2 o) - o)

3 O(m) - O(m)
4 O(m?) [Table|17] | - O(m?)
5 O(m?®) [Table|1§] | - O(m?)
6 o(1) O(m) O(m?)
7 O(m*) [Table 20] | » O(m®) O(m®)
8 - - O(m®)
9 o(1) - O(m®)

Table 16: Line wise time complexity of Algorithm A highlight denotes the number of loop
iterations. A pointer (») denotes that a line is within a loop.

50



Line Number H

Line complexity \

Loop complexity \

Dominant complexity

© 00O Ut = W N~

14
15
16
17
18
19
20
21
22
23
24
25
26
27

'yvy'vyvyy

vV vV V

‘'vVyVyVyVYy ' vy v'
\ARVARVARV)

3 33

SESESECECECECRCNCNCNS)

e e e e e e rn e a n an ren mn ran em en en rn n n n  en en en an

33333333

D) e~ N N N N N N N N

NN NN

NONON NN

SESECECECECECECECECECEC OS]

333333833333 33 3

no

Table 17: Line wise time

complexity of Algorithm A highlight denotes the number of loop
iterations. A pointer (») denotes that a line is within a loop. Each additional pointer (>, >)
denotes a nested loop.

’ Line Number H

Line complexity \ Loop complexity \

Dominant complexity ‘

1

00 O Ui W N

9
10
11
12
13
14
15
16
17

_(9(1)

O(m?) [Table
o)

o)
O(m?) [Table

_(’)(1)
O(m?) [Table

O(m?) [Table

o0(1)

L2

W W W W w w

W W W w w w

SESECECECECECECECECECECECECEC NS

e e e e e e e e e e e e e e s

3333333833333 3338

51

Table 18: Line wise time complexity of Algorithm A highlight denotes the number of loop
iterations. A pointer (») denotes that a line is within a loop.




Line Number H Line complexity | Loop complexity ‘ Dominant complexity

1 Z i _
2 O(m) - O(m)
3 0(1) - O(m)
4 O(m) - O(m)
5 O(m) - O(m)
6 - - O(m)
7 O(m) - O(m)
8 O(m) - O(m)
9 O(m) O(m) O(m)
10 O(m) » O(m?) O(m?)
11 - - O(m?)
12 O(m O(m) O(m?)
13 O(m) » O(m?) O(m?)
14 - - O(m?)
15 O(m) - O(m?)
16 o(1) - O(m?)

Table 19: Line wise time complexity of Algorithm [6] A highlight denotes the number of loop
iterations. A pointer (») denotes that a line is within a loop.

Line Number H Line complexity ‘ Loop complexity ‘ Dominant complexity ‘

1 o0(1) - o(1)

2 O(m) - O(m)
3 O(m) - O(m)
4 - - O(m)
5 o) O(m) O(m)
6 O(m) » O(m?) O(m?)
7 O(m) > O(m?) O(m?)
8 O(m) » O(m?) O(m?)
9 - - O(m?)
10 o(1) > O(m) O(m?)
11 o) » O(m) O(m?)
12 O(m?) [Table 21] | » > O(m?) O(m*)
13 - - O(m*)
14 o) > > O(m) O(m*)
15 O(m) > > O(m?) O(m?)
16 O(m) > > O(m?) O(m?)
17 O(m) > > O(m?) O(m*)
18 - - O(m*)
19 O(m) > > O(m?) O(m*)
20 O(m) > > O(m?) O(m?)
21 O(m) > > O(m?) O(m?)
22 - - O(m*)
23 O(m) » O(m?) O(m*)
24 O(m) » O(m?) O(m*)
25 O(m) » O(m?) O(m%)
26 - - O(m%)
27 - ; O(m4)
28 O(1) ; O(m)

Table 20: Line wise time complexity of Algorithm [7] A highlight denotes the number of loop
iterations. A pointer (») denotes that a line is within a loop. An additional pointer (>>) denotes a
nested loop.

52



1762

1763

1764

1765

1766

1767

Line Number \

Line complexity | Loop complexity \ Dominant complexity

1 _ _ -
2 o) - o(1)
3 O(m) - O(m)
4 o) - O(m)
5 - - O(m)
6 o) - O(m)
7 O(m) - O(m)
8 O(m) - O(m)
9 o01) - O(m)
10 o) o(1) O(m)
11 O(m) » O(m) O(m)
12 o) > O(1) O(m)
13 O(m) > O(m) O(m)
14 O(m) > O(m) O(m)
15 - - O(m)
16 - . O(m)
17 - - O(m)
18 O(m) o(1) O(m)
19 O(m) » O(m) O(m)
20 o) > O(1) O(m)
21 O(m) » O(m) O(m)
22 O(m) > O(m) O(m)
23 - - O(m)
24 - - O(m)
25 - ; O(m)
26 0(1) O(m) O(m)
27 O(m) » O(m?) O(m?)
28 O(m?) » O(m?) O(m?)
29 - - O(m?)
30 - - O(m?)
31 - - O(m?)
32 o) - O(m?)
33 O(m) ; O(m?)
34 o) - O(m?)
35 - - O(m?)
36 O(m) - O(m?)
37 O(m) - O(m?)
38 O(m?) ; O(m?)
39 - - O(m?)
40 - - O(m?)
41 0(1) - O(m?)

Table 21: Line wise time complexity of Algorithm A highlight denotes the number of loop
iterations. A pointer (») denotes that a line is within a loop.

8 Concluding Remarks

In this two-part study on the vertex cover problem on cubic bridgeless graphs (VC — CBG), we dis-
covered that: (i) VC — CBG is NP-complete (Theorem [1) and (ii) VC — CBG € P (Theorem [2[?] As a
consequence of these two theorems combined with Proposition 1(c) in [Coo00], we get the following
corollary:

Corollary 2. P = NP.

42Theorem [2|is proven via Theorem [8| (algorithm’s proof of correctness) and Theorem E] (time complexity).

53



1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

8.1 Additional Remarks

Practical Consequences + Ethical Implications: We presented a polynomial-time algorithm
for an NP-complete problem. However, the problem space for this paper has been narrowed down to
cubic bridgeless graphs (VC — CBG). Hence, the algorithm’s practical utility depends on how general-
izable it is for various graph types. Moreover, even for the narrowed-down problem of VC — CBG, the
time complexity is a higher-order polynomial. Therefore, the time complexity will only worsen for
the general case (and in turn, for using the algorithm for other NP-complete problems; see footnote
111]). Hence, the practical impact of our work is (none to) limited until more efficient versions of this
(galactic) algorithm are found, for VC — CBG, for VC — CG, for VC, or for other NP-complete problems.

Given that we do not expect any immediate practical consequences of our work, we do not
expect any ethical implications either. That said, our work may eventually lead to algorithms that,
for example, may break certain variants of cryptography. Hence, we stress the need for a study
to understand the immediate and long-term implications of the algorithm to various fields. This
study should at least (i) provide appropriate quantification (e.g., how long is “long-term”, or what
order of the polynomial is not “practical” for how big a size of data in which field) and (ii) suggest
alternative solutions wherever applicable (e.g., use information-theoretic security).

Acknowledgement

Blank for now.

References

[Aarl6] Scott Aaronson. P=\limits"? np. Open problems in mathematics, pages 1-122, 2016.

[ABLTO06] Sanjeev Arora, Béla Bollobds, Ldszlé Lovdsz, and Iannis Tourlakis. Proving integrality
gaps without knowing the linear program. Theory OF Computing, 2:19-51, 2006.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of mathe-
matics, pages 781-793, 2004.

[AKS11] Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of vertex cover and
independent set in bounded degree graphs. Theory of Computing, 7(1):27-43, 2011.

[ALM™98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM (JACM),
45(3):501-555, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization
of np. Journal of the ACM (JACM), 45(1):70-122, 1998.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
ACM Transactions on Computation Theory (TOCT), 1(1):1-54, 2009.

[BBDLO1] Therese C Biedl, Prosenjit Bose, Erik D Demaine, and Anna Lubiw. Efficient algorithms
for petersen’s matching theorem. Journal of Algorithms, 38(1):110-134, 2001.

[Ber57] Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of
Sciences, 43(9):842-844, 1957.

[BGS75]  Theodore Baker, John Gill, and Robert Solovay. Relativizations of the p=7np question.
SIAM Journal on computing, 4(4):431-442, 1975.

[BIP19]  Peter Biirgisser, Christian Tkenmeyer, and Greta Panova. No occurrence obstructions in
geometric complexity theory. Journal of the American Mathematical Society, 32(1):163—
193, 2019.

[BJS22] Marin Bougeret, Bart MP Jansen, and Ignasi Sau. Bridge-depth characterizes which
minor-closed structural parameterizations of vertex cover admit a polynomial kernel.
SIAM Journal on Discrete Mathematics, 36(4):2737-2773, 2022.

[BLW86] Norman Biggs, E Keith Lloyd, and Robin J Wilson. Graph Theory, 1736-1936. Oxford
University Press, 1986.

54



1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

[BMOS)]
[BW15]

[CLRS16]

[CLRS22]

[Cob65]

[CooT1]

[Co000]
[Co003]

[CS12]

[CZ24]

[DF95)
[DF12]

[DGKRO3]

[Din07]

[DIP20]

[DS05]
[Edm65]

[EK+12]

[EKK*+11]

[EPLS2]

John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory. Springer
Publishing Company, Incorporated, 2008.

Samuel R Buss and Ryan Williams. Limits on alternation trading proofs for time—space
lower bounds. computational complexity, 24:533-600, 2015.

Siu On Chan, James R Lee, Prasad Raghavendra, and David Steurer. Approximate con-
straint satisfaction requires large lp relaxations. Journal of the ACM (JACM), 63(4):1-
22, 2016.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduc-
tion to algorithms. MIT press, 2022.

Alan Cobham. The intrinsic computational difficulty of functions. In Yehoshua Bar-
Hillel, editor, Logic, methodology and philosophy of science, pages 24—-30. North-Holland
Pub. Co., 1965.

Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing, pages 151-158, 1971.

Stephen Cook. The p versus np problem. Clay Mathematics Institute, 2(6):3, 2000.

Stephen Cook. The importance of the p versus np question. Journal of the ACM (JACM),
50(1):27-29, 2003.

Maria Chudnovsky and Paul Seymour. Perfect matchings in planar cubic graphs. Com-
binatorica, 32(4):403-424, 2012.

Lorenzo Ciardo and Stanislav Zivny. Semidefinite programming and linear equations
vs. homomorphism problems. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, pages 1935-1943, 2024.

Rod G Downey and Michael R Fellows. Fixed-parameter tractability and completeness
i: Basic results. SIAM Journal on computing, 24(4):873-921, 1995.

Rodney G Downey and Michael Ralph Fellows. Parameterized complezity. Springer
Science & Business Media, 2012.

Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered
pcp and the hardness of hypergraph vertex cover. In Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, pages 595-601, 2003.

Irit Dinur. The pcp theorem by gap amplification. Journal of the ACM (JACM),
54(3):12—es, 2007.

Julian Dérfler, Christian Tkenmeyer, and Greta Panova. On geometric complexity theory:
Multiplicity obstructions are stronger than occurrence obstructions. STAM Journal on
Applied Algebra and Geometry, 4(2):354-376, 2020.

Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.
Annals of mathematics, pages 439-485, 2005.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449-467,
1965.

Louis Esperet, Frantisek Kardos, et al. A superlinear bound on the number of perfect
matchings in cubic bridgeless graphs. European Journal of Combinatorics, 33(5):767-798,
2012.

Louis Esperet, Frantisek Kardo$, Andrew King, Daniel Kral’, and Sergey Norine.
Exponentially many perfect matchings in cubic graphs. Advances in Mathematics,
227(4):1646-1664, 2011.

Jack Edmonds, WR Pulleyblank, and L. Lovéasz. Brick decompositions and the matching
rank of graphs. Combinatorica, 2:247-274, 1982.

55



1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

[ESS*10]

[Eul36)
[Fei03]
[FFRO7]

[FGL*96]

[FMP+15]

[For09]
[For21]

[Gib85]
[GJ02]

[GJIST74]

[GNWO7]

[GW24]

[Hal35]
[Has01]
[1P17]
[Kar72]
[Kho02]
[Khol9)
[KMS23]

[Kon31]

Louis Esperet, Petr Skoda, Riste Skrekovski, et al. An improved linear bound on the
number of perfect matchings in cubic graphs. Furopean Journal of Combinatorics,
31(5):1316-1334, 2010.

Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, pages 128-140, 1736.

Uriel Feige. Vertex cover is hardest to approximate on regular graphs. Technical Report
MCS03-15, 2003.

Ralph Faudree, Evelyne Flandrin, and Zdenék Ryjacek. Claw-free graphs—a survey.
Discrete Mathematics, 164(1-3):87-147, 1997.

Uriel Feige, Shafi Goldwasser, Laszlé Lovasz, Shmuel Safra, and Mario Szegedy. Inter-
active proofs and the hardness of approximating cliques. Journal of the ACM (JACM),
43(2):268-292, 1996.

Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald De Wolf.
Exponential lower bounds for polytopes in combinatorial optimization. Journal of the
ACM (JACM), 62(2):1-23, 2015.

Lance Fortnow. The status of the p versus np problem. Communications of the ACM,
52(9):78-86, 2009.

Lance Fortnow. Fifty years of p vs. np and the possibility of the impossible. Communi-
cations of the ACM, 65(1):76-85, 2021.

Alan Gibbons. Algorithmic graph theory. Cambridge university press, 1985.

Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh
freeman New York, 2002.

Michael R Garey, David S Johnson, and Larry Stockmeyer. Some simplified np-complete
problems. In Proceedings of the sixth annual ACM symposium on Theory of computing,
pages 47-63, 1974.

Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of
vertex cover variants. Theory of Computing Systems, 41:501-520, 2007.

Pawel Gawrychowski and Mateusz Wasylkiewicz. Finding perfect matchings in bridgeless
cubic multigraphs without dynamic (2-) connectivity. In 32nd Annual European Sym-
posium on Algorithms (ESA 2024), pages 59—1. Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2024.

P Hall. On representatives of subsets. Journal of the London Mathematical Society,
1(1):26-30, 1935.

Johan Hastad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798-859, 2001.

Christian Ikenmeyer and Greta Panova. Rectangular kronecker coefficients and plethysms
in geometric complexity theory. Advances in Mathematics, 319:40-66, 2017.

Richard M Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, pages 85-103. Springer, 1972.

Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages T67-775, 2002.

Subhash Khot. On the proof of the 2-to-2 games conjecture. Current Developments in
Mathematics, 2019(1):43-94, 2019.

Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph
have near-perfect expansion. Annals of Mathematics, 198(1):1-92, 2023.

Denés Konig. Grafok és matrixok. matematikai és fizikai lapok, 38: 116-119, 1931.

56



1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

[KRO8]

[KSS09]

[KT06]

[Lev73]

[LPOY]

[LRS15]

[LV99]

[Min80]

[MS01]

[MS08]

[Mul99]

[Mul11]

[Mul12]

[MVS0]

[Oum09]

[Pan23]

[Pet91]
[Raz85a]

[Raz85b)

[Rel24]

[Rot17]

[RR94]

Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within
2- . Journal of Computer and System Sciences, 74(3):335-349, 2008.

Daniel Kral’, Jean-Sébastien Sereni, and Michael Stiebitz. A new lower bound on the
number of perfect matchings in cubic graphs. SIAM Journal on Discrete Mathematics,
23(3):1465-1483, 20009.

Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.

Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi
informatsii, 9(3):115-116, 1973.

Laszl6 Lovasz and Michael D Plummer. Matching theory, volume 367. American Math-
ematical Soc., 2009.

James R Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of
semidefinite programming relaxations. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 567-576, 2015.

Richard J Lipton and Anastasios Viglas. On the complexity of sat. In 40th Annual
Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages 459-464.
IEEE, 1999.

George J Minty. On maximal independent sets of vertices in claw-free graphs. Journal
of Combinatorial Theory, Series B, 28(3):284-304, 1980.

Ketan D Mulmuley and Milind Sohoni. Geometric complexity theory i: An approach to
the p vs. np and related problems. STAM Journal on Computing, 31(2):496-526, 2001.

Ketan D Mulmuley and Milind Sohoni. Geometric complexity theory ii: Towards ex-
plicit obstructions for embeddings among class varieties. SIAM Journal on Computing,
38(3):1175-1206, 2008.

Ketan Mulmuley. Lower bounds in a parallel model without bit operations. SIAM
Journal on Computing, 28(4):1460-1509, 1999.

Ketan D Mulmuley. On p vs. np and geometric complexity theory: Dedicated to sri
ramakrishna. Journal of the ACM (JACM), 58(2):1-26, 2011.

Ketan D Mulmuley. The gct program toward the p vs. np problem. Communications of
the ACM, 55(6):98-107, 2012.

Silvio Micali and Vijay V Vazirani. An o (v— v— c¢— e—) algoithm for finding maximum
matching in general graphs. In 21st Annual symposium on foundations of computer
science (Sfcs 1980), pages 17-27. IEEE, 1980.

Sang-il Oum. Perfect matchings in claw-free cubic graphs. arXw preprint
arXiv:0906.2261, 2009.

Greta Panova. Computational complexity in algebraic combinatorics, to appear in cur-
rent developments in mathematics, 2023.

Julius Petersen. Die theorie der reguldren graphs. Acta Mathematica, 1891.

Alexander Razborov. Lower bounds on the monotone complexity of some boolean func-
tion. In Soviet Math. Dokl., volume 31, pages 354357, 1985.

Alexander A Razborov. Lower bounds on monotone complexity of the logical permanent.
Mathematical Notes of the Academy of Sciences of the USSR, 37:485-493, 1985.

Kunal Relia. On efficient computation of dire committees. arXiv preprint
arXiv:2402.19865, 2024.

Thomas Rothvofl. The matching polytope has exponential extension complexity. Journal
of the ACM (JACM), 64(6):1-19, 2017.

Alexander A Razborov and Steven Rudich. Natural proofs. In Proceedings of the twenty-
sizth annual ACM symposium on Theory of computing, pages 204213, 1994.

o7



1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

[Shig0)]

[Tur36]

[Tur38]

[Tut47]

[Val79a]

[Val79b]

[Varl0]

[VL91]

[VooT9]

[Wes01]

[Wig06]

[Wig09]

[Will4]

[Wil19]

[Wil25]

[Yan88]

Najiba Sbihi. Algorithme de recherche d’un stable de cardinalité maximum dans un
graphe sans étoile. Discrete Mathematics, 29(1):53-76, 1980.

Alan M Turing. On computable numbers, with an application to the entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 42(1):230-265, 1936.

Alan M Turing. On computable numbers, with an application to the entscheidungsprob-
lem. a correction. Proceedings of the London Mathematical Society, 2(1):544-546, 1938.

William T Tutte. The factorization of linear graphs. Journal of the London Mathematical
Society, 1(2):107-111, 1947.

Leslie G Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual
ACM symposium on Theory of computing, pages 249-261, 1979.

Leslie G Valiant. The complexity of computing the permanent. Theoretical computer
science, 8(2):189-201, 1979.

Moshe Y Vardi. on p, np, and computational complexity. Communications of the ACM,
53(11):5-5, 2010.

Jan Van Leeuwen. Handbook of theoretical computer science (vol. A) algorithms and
complezity. Mit Press, 1991.

Marc Voorhoeve. A lower bound for the permanents of certain (0, 1)-matrices. In
Indagationes Mathematicae (Proceedings), volume 82-1, pages 83-86. Elsevier, 1979.

Douglas Brent West. Introduction to graph theory, volume 2. Pearson Prentice hall Upper
Saddle River, 2001.

Avi Wigderson. P, np and mathematics—a computational complexity perspective. In
Proceedings of the ICM, volume 6, pages 665-712, 2006.

Avi Wigderson. Knowledge, creativity and p versus np. URL http://www. math. ias.
edu/  avi/PUBLICATIONS/MYPAPERS/AWO09/AW09. pdf. Circulated manuscript,
20009.

Ryan Williams. Nonuniform acc circuit lower bounds. Journal of the ACM (JACM),
61(1):1-32, 2014.

R Ryan Williams. Some estimated likelihoods for computational complexity. Computing
and Software Science: State of the Art and Perspectives, pages 9-26, 2019.

R Ryan Williams. Simulating time with square-root space. arXww preprint
arXiv:2502.17779 (To appear STOC 25), 2025.

Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.
In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages
223-228, 1988.

58



1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

A Selection of Simple Connected Graphs

We hand-waved the selection of simple connected graphs for our study (e.g., see Footnotes and.
Hence, we extensively discuss why this selection was worthy of hand-waving rather than a deeper
discussion. Consequently, we reiterate that all our results are unconditiona]@

Let us zoom out to discuss our choice of the graph used in this paper from the family of graphs
(2-uniform hypergraphs). Foremost, it is clear by now that we use cubic bridgeless graphs. As is
the norm in literature, all graphs are unweighted undirected finite graphs. Additionally, w.l.o.g., we
stated that the considered graphs are simple connected graphs. We clarify the last choice.

Connected Graphs: We first discuss the requirement that graphs are connected.

e Graph Theory: The assumption on the graph being connected is standard in graph theory
literature about papers on matching theory. For instance, Line 35 on Page Number 843 (just
below Theorem 1) in [Ber57] assumes the graph to be connected. This is because in the
context of such work (and our paper), a technique that works for one connected component
implicitly works for each connected component of a given graph, and in turn, for the entire
graph, assuming all components share the common properties. Hence, when a theorem holds
for a connected component of a given graph, it implies that it holds for the entire graph.

e Computational Complexity: Our results in both parts of the paper hold when we have
a connected graph. Hence, if an unconnected graph is given, our results will hold for each
connected component of the graph. We simply need to take the union of the outcomes of
each connected component to get the overall outcome. For instance, executing Lines 1 to 10
of Algorithm [I] for each connected component and eventually taking the union of the vertex
covers S we get in Line 10 indeed results in a minimum vertex cover.

Simple Graphs: We now discuss the requirement that graphs are simple. A simple graph, by
definition, is undirected.

e Graph Theory: If a matching theory (graph theory) result holds for general graphs, it implies
it will hold for the special case of simple graphs. Hence, each known result we use in the paper
holds for simple graphs, too. Our results are particularly designed to hold for simple graphs.

e Computational Complexity: From the computational complexity perspective, we discussed
how VC — CBG can alternatively be proven to be NP-complete by reducing from the VC on cubic
simple graphs by using the same construction we discussed in Part [l Before that, the VC on
cubic simple graphs can be proven to be NP-complete by reducing from VC — CG.

More specifically, if the given graph is not simple, we first remove each multiple edge and each
loop. Then, we add an edge to each vertex that has a degree less than three, such that the edge
connects the vertex to a subgraph of five dummy vertices (Figure . This ensures the graph
remains cubic while becoming simpl@ Each subgraph needs 3 vertices to form an MVC.

connects to vertex

Figure 12: A subgraph of dummy vertices used to make a cubic graph simple.

In summary, in the context of this paper, all our computational complexity and graph-theoretic
results hold when we use simple connected graphs. Overall, for the sake of completeness, the
unconditional results in the paper use finite unweighted simple connected cubic bridgeless graphs.

43The use (of variations) of the words “assume” and “trivial” in Footnotes [2] and Was bothersome. While their
use in the context of the paper is appropriate, we add this discussion to the appendix to provide the reasons for our
choice of simple connected graphs. This discussion reinforces that our results are indeed unconditional.

44 Alternatively, for each edge, split it and insert Block Type B1 (but not Type Bs) as discussed in Part

59



	Introduction
	Vertex Cover and its Computational Aspects
	P=? NP, Lower Bounds, Barriers, and the MVC
	Some Non-Computational Aspects of Graph Theory

	Notation and Preliminaries
	I VC-CBG is NP-complete
	Proof of NP-completeness of VC-CBG

	II VC-CBG P
	Algorithm Overview and Intermediate Results
	Find a Perfect Matching
	Populate Represents Table
	Diminishing Hops
	Summary

	Algorithm
	Proof of Correctness
	Time Complexity Analysis
	Concluding Remarks
	Additional Remarks

	Selection of Simple Connected Graphs


