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Note: gemini.google.com and chat.com were used for stylistic purposes when drafting this paper28

(specifically, simplifying at most −25eiπ sentences we wrote). Grammarly was used for grammar.29

1 Introduction30

The P
?
= NP question [Coo71, Lev73, Kar72], directly and indirectly, is arguably one of the biggest31

curiosities in computer science and mathematics. Informally, the question asks if every computa-32

tional problem whose solution can be verified in polynomial time can also be solved in polynomial33

time. Formally, the complexity class P consists of computational problems whose solution can be34

computed in time polynomial in the size of input, which is considered “efficient”1. Alternatively,35

the problems in P are a set of all languages that can be decided by a deterministic Turing Machine36

[Tur36, Tur38] in polynomial time. On the other hand, the class NP consists of computational37

problems that, when given a candidate solution, we can verify in time polynomial in the size of the38

input whether the candidate solution is correct or not. Hence, the problems in NP are a set of39

all languages that can be decided by a non-deterministic Turing Machine in polynomial time (or40

that can only be verified by a deterministic Turing Machine in polynomial time). The question of41

whether the problems in NP can be computed efficiently or not forms the basis of P
?
= NP.42

The P
?
= NP question was formalized due to the Cook-Levin Theorem [Coo71, Lev73]. Since43

then, it has led to some remarkable work. An early example is by Karp who showed that twenty one44

computational (combinatorial) problems were, indeed, NP-complete [Kar72], thus formally further45

cementing what earlier scientists like Nash (in his 1955 letter to the National Security Agency)46

and Gödel (in his 1956 letter to von Neumann) already believed [Aar16]. Interestingly, eleven47

of the twenty-one Karp’s NP-complete problems are directly graph-based problems (and at least48

one other problem is a graph-based problem indirectly; for example, the Job Sequencing problem49

may be trivially formulated on a disjunctive graph). Furthermore, among these eleven graph-based50

problems, one of the extensively studied is the vertex cover problem, the topic of our discussion.51

1.1 Vertex Cover and its Computational Aspects52

Given an unweighted undirected graph (specifically, a 2-uniform hypergraph)2, the vertex cover of53

the graph is a set of vertices that includes at least one endpoint of every edge of the graph. Formally,54

given a graph G = (V,E) consisting of a set of vertices V and a collection E of 2-element subsets of V55

called edges, the vertex cover of the graph G is a subset of vertices S ⊆ V that includes at least one56

endpoint of every edge of the graph, i.e., for all e ∈ E, e∩ S ̸= ∅. The corresponding computational57

problem of finding the minimum-size vertex cover (MVC) is NP-complete3 (Node Cover, Problem58

5 in [Kar72]). However, the hardness meant that there is no known unconditional deterministic59

polynomial-time algorithm to solve MVC unless P = NP. Hence, a rich line of research ensued that60

improved our general understanding related to the complexity of the MVC problem, especially around61

its (in)approximability and parameterized complexity.62

Approximation Algorithm and Inapproximability: A natural relaxation to counter the hard-63

ness of any problem is to find an approximate solution that can be computed efficiently. For the64

MVC, a trivial 2-approximation algorithm computes a vertex cover of size at most twice the minimum65

size vertex cover in polynomial time. The algorithm picks an arbitrary edge e = (u, v) ∈ E, adds66

both the vertices u and v to the vertex cover S, removes all edges connected to either of the two67

vertices (u and v), and repeats until no edge remains. Additionally, complex techniques like linear68

programming-based algorithms also obtain an approximation ratio of 2 [ABLT06]. However, it is not69

known whether an approximation algorithm with a strictly better approximation ratio exists or not.70

This is among the major open problems within the Theoretical Computer Science (TCS) commu-71

nity. A path towards understanding this was explored by H̊astad who, following the PCP theorem72

[FGL+96, AS98, ALM+98, Din07], used a 3-bit PCP to show that it is NP-hard to approximate MVC73

within a factor of 1.1667 − ε [H̊as01]4. Dinur and Safra went beyond this factor to 1.3606 − ε [DS05].74

1The first association between efficiency, polynomial-time computability, and the complexity class P may be
attributed to the Cobham-Edmonds thesis [Cob65, Edm65].

2For the remainder of the paper, a graph refers to an unweighted undirected finite graph. Furthermore, without loss
of generality (w.l.o.g.), we assume the graph is simple (no loops and no multiple edges) and connected (Appendix A).

3Strictly speaking, the decision version (VC) of the minimum-size vertex cover problem is NP-complete whereas the
MVC itself (search version) is NP-hard. See Section 2.1 of [Kho19] for a lucid explanation delineating (a) search and
decision problems and (b) NP-hardness and NP-completeness. Until formalized, we use MVC and VC interchangeably.

4ε denotes an arbitrarily small constant such that ε > 0 and the results are meant to hold for every such ε.
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Khot, Minzer, and Safra further improved the bound to 1.4142 − ε (as an implication of proving75

the 2-to-2 Games Conjecture) [KMS23]. Independently, assuming Khot’s Unique Games Conjecture76

(UGC) [Kho02], we know that the MVC problem may be hard to approximate within a factor of 2 − ε77

[KR08], thus matching the bound of the known trivial 2-approximation algorithm. Khot and Regev78

actually gave a generalization of this result: assuming the UGC, the MVC on k-uniform hypergraphs79

may be hard to approximate within k−ε for all integers k ≥ 2. Without assuming the UGC, the MVC80

on k-uniform hypergraphs is hard to approximate within k− 1− ε for all integers k ≥ 3 [DGKR03].81

Parameterized Complexity: Another relaxation to overcome the worst-case intractability of the82

MVC is to assume the size of certain parameters. For instance, if we assume that the size of the vertex83

cover is small, then there are known algorithms that run in time polynomial in the size of the input84

(i.e., number of edges and vertices). However, all such results are conditioned on the assumption of85

the size of one or more parameters, including a new parameter called bridge-depth [BJS22]. Hence,86

given our aim to provide unconditional results, we refer the readers to a comprehensive discussion87

on the parameterized complexity [DF12] and, in particular, on the fixed-parameter tractability of88

the MVC [DF95] and on the parameterized complexity of its variants [GNW07].89

A common denominator across the above-discussed computational aspects of the MVC is the miss-90

ing (tangible and visible) effort to discover an unconditional deterministic polynomial-time (exact)91

algorithm. To the best of our knowledge, no recorded work aims to either (i) significantly improve92

the trivial 2-approximation algorithm unconditionally and deterministically or (ii) tame the expo-93

nential component of a parameterized algorithm. Additionally, there are no advances in efficiently94

solving the MVC via parallel computing or under quantum complexity (else the relationship between95

complexity classes BQP (or EQP) and NP would be known).96

Tractability under Restricted Graphs: The MVC becomes tractable under various restricted97

scenarios. For example, the MVC is in P when the graph is restricted to (i) a tree, (ii) bipartite98

(Kőnig’s theorem [Kon31]), or (iii) claw-free (because the maximum independent set problem on99

claw-free graphs is in P [Sbi80, Min80]). However, no such study aims to discover an unconditional100

deterministic polynomial-time (exact) algorithm for an NP-complete variant of the MVC.101

102

In summary, there is neither a study to significantly improve the 2-approximation algorithm for103

the MVC nor a study on an algorithm for a restricted setting of the MVC that is NP-complete.104

Consequently, we shift our discussion to understanding how the research on resolving the P
?
= NP105

question relates to the MVC. This is important especially because all NP-complete problems are106

“equivalent” in a certain technical sense. In particular, we assess if existing research either prohibits107

or limits the discovery of an algorithm for an NP-complete variant of the MVC.108

1.2 P
?
= NP, Lower Bounds, Barriers, and the MVC109

The P
?
= NP question has arguably attracted unparalleled research in the number of approaches110

to solving it. On the surface, there are three possible outcomes: (i) P = NP, (ii) P ̸= NP, or (iii)111

P
?
= NP is unsolvable or undecidable. On zooming in, each outcome, especially the first two, is112

associated with multiple approaches. The third outcome has not received particular attention.113

To prove P = NP using a constructive proof, we can either (a) discover a polynomial-time114

algorithm for an NP-complete problem or (b) prove that a problem in P is NP-complete. While115

the technique used for both approaches may be the same, the problem space being targeted is116

different. A constructive proof for P = NP, especially an algorithm with a lower order polynomial117

time complexity, would fundamentally reshape how we study complexity theory, as not only will118

all “hard” problems be in P, but there will be an algorithm to solve them all! A non-constructive119

proof for P = NP may not have similar major practical consequences. On the other hand, the aim120

to prove P ̸= NP, which is widely believed to be the case and would imply that the problems in121

NP cannot be computed efficiently, has led to multiple important breakthroughs in how and more122

importantly, how not to approach a proof for P ̸= NP.123

Arguments Against a Proof of P ̸= NP: There is an amazing breadth and depth of research124

focused towards proving P ̸= NP. Yet, each major approach, ranging from the earlier logic-based125

techniques to the most recent Geometric Complexity Theory, has either hit at least one of the126

barriers in complexity theory or been stagnated. We discuss some of these approaches as arguments127

against a proof of P ̸= NP and then provide an overview of its relevance to the MVC.128
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Approaches that Hit a Barrier: We enlist approaches that were negated by one of the three barriers129

in complexity theory, namely, relativization [BGS75], natural proofs [RR94], or algebrization [AW09].130

• Logical Techniques: Initial research in TCS that aimed at separating the classes P and NP131

used techniques borrowed from logic and computability theory, especially previously successful132

techniques that were used for separation results. One such strong candidate was the diagno-133

lization technique. However, Baker, Gill, and Solovay [BGS75] showed that these techniques134

that relativize cannot be used to solve the P
?
= NP question. This is because a relativizing135

proof for P ̸= NP would mean that there exists another “relativized world” where P and136

NP Turing machines can compute a problem in polynomial time, even in a single time stamp.137

Hence, there are relativized worlds where P = NP, and other relativized worlds where P ̸=138

NP. Therefore, any solution to the P
?
= NP problem will require non-relativizing techniques.139

• Proof Complexity and Circuit Lower Bounds: The need for a non-relativizing approach140

led the researchers to turn to proof complexity and circuit complexity. The proof complexity141

approach would lead to counterintuitive results such that, with some additional work, one142

could prove P ̸= NP, and even NP ̸= coNP. This is because the resolution technique143

(and its enhancements) in proof complexity discuss exponential lower bounds on the sizes of144

unsatisfiability proofs but not for arbitrary proof systems. Consequently, if one could prove145

super-polynomial lower bounds for arbitrary proof systems, the above-mentioned counterintu-146

itive result would hold. Hence, researchers shifted the focus to circuit lower bounds.147

One of the exciting circuit lower bound approaches was the monotone circuit lower bounds148

program due to an exponential lower bound for the clique problem5 by a then-graduate stu-149

dent Razborov [Raz85a]. However, this hit a wall when an exponential lower bound for the150

matching problem6 was discovered by Razborov [Raz85b]. Thus, a discussion on monotone151

circuit lower bounds was actually a discussion on the weakness of monotone circuits and not152

on the “hardness” of NP-complete problems.153

Despite such limitations, the circuit lower bound program continued to be promising. It used a154

novel but intuitive approach where, in addition to restricting the number of gates (as done with155

the monotone circuits), the “depth” of the circuits was restricted, i.e., the number of layers of156

gates between input and output was restricted. Hence, such small-depth circuits, coupled with157

combinatorial techniques like the polynomial method and random restriction, were examined.158

However, this entire approach hit a new barrier, namely, the natural proofs barrier [RR94].159

Specifically, a natural proof would show that the very problems that were proven hard had an160

efficient algorithm.161

• Arithmetization (+ Logic): Given the existence of the relativization and natural proofs162

barriers, researchers turned their attention to an approach called arithmetization.163

Specifically, we know that diagonalization relativizes but circumvents natural proofs. On the164

other hand, techniques using circuit complexity hit the natural proof barrier. Hence, there was165

a need to circumvent both of these barriers. This was the reason for the use of arithmetization,166

a technique that promoted the basic logical gates to polynomials and arithmetic operations.167

Thus, the technique (i) enabled the use of properties like error-correcting that were not usable168

for the Boolean case and (ii) also did not relativize. Hence, the mixture of the non-relativizing169

arithmetization with non-naturalizing diagonalization seemed to be a good approach. However,170

Aaronson and Wigderson [AW09] showed the existence of a new barrier: algebraic relativization171

(algebrization). This barrier depicted that all known arithmetization-based results that do not172

relativize, algebrize! Simultaneously, they showed that it is imperative for a technique to not173

algebrize for it to solve a host of basic complexity-related problems (see Section 1.2, second174

set of bullet points in [AW09] for a list), which meant that a solution to the P
?
= NP question175

also needs to be non-algebrizing.176

The three barriers in complexity theory – relativization, natural proofs, and algebrization – have177

shown that approaches based on diagonalization (and other logic methods), circuit lower bounds,178

5Given a graph G, a clique is a subset of vertices W ⊆ V such that all vertices in the subset are adjacent to each
other (i.e., the subset forms a complete graph). The corresponding computational problem of finding the maximum
size cliques in a graph is the clique problem. The clique problem is NP-complete.

6Given a graph G, matching M is a subset of edges such that no vertex is incident to more than one edge
(Defintion 7). The corresponding computational problem of finding the maximum size matching is the matching
problem. The matching problem is in P.
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and arithmetization cannot be used to prove that complexity classes P and NP are distinct. Hence,179

the very existence of these barriers against a proof for a separation result is a strong argument180

against P ̸= NP. Moreover, an unconditional deterministic polynomial-time algorithm for an NP-181

complete problem is not affected by these barriers, and a correct proof will hold without violating182

or contradicting any existing theory! This acts as an argument in favor of P = NP.183

On the flip side, these barriers also suggest that proving separation between the classes will184

require significantly different approaches. A few approaches that circumvent each of these barriers185

have been explored but are, to the best of our knowledge, currently stagnated:186

“Stagnated” Approaches: We now enlist approaches that have made progress but are stagnated.187

• Ironic Complexity Theory (ICT)7: The term “ironic” in the name is apt - the ICT program188

aims to assess whether an efficient algorithm for one problem can be used to show that an189

efficient algorithm cannot exist for another problem. Conversely, is it possible that proving190

the non-existence of an efficient algorithm for one problem implies that an efficient algorithm191

solves another problem? At a high level, the ICT program aims to discover algorithms to192

prove lower bounds. However, theoretically, such surprising results depend on collapse(s) in193

the Time Hierarchy Theorem. Previous examples of positive results involve understanding, say194

time-space complexity tradeoffs [LV99], to discover surprising algorithms and collapses that195

do occur to establish new lower bounds! While examples of such amazing results are there,196

especially by Williams (e.g., [Wil14]), the common denominator across all approaches is that197

it will still require years of work.198

• Arithmetic Complexity Theory (ACT): The ACT program, a generalization of the tra-199

ditional Turing Machine and Boolean circuits using Boolean values, uses arithmetic circuits,200

which consider computer programs that use some larger field of values, such as real or complex201

numbers instead of Boolean. Then, the task here is to find the minimum number of operations202

needed to compute some polynomial over the chosen field of values. To that end, the arith-203

metic complexity world analog of the P
?
= NP question is the permanent versus determinant204

question for an n× n matrix8. It is known that the determinant is computable in polynomial205

time but the permanent is #P-complete [Val79b]. This led to a remarkable line of research206

on the study of the lower bounds for arithmetic circuits concerning this question. However,207

all approaches fell short of resolving the question, mainly the Valiant Conjecture. The reasons208

include the absence of a technique that works for permanent but fails for determinant and a209

technique that circumvents the arithmetic variant of the natural proof barrier, if there is one.210

• Geometric Complexity Theory (GCT): The GCT program was a once-promising ap-211

proach started by Mulmuley [Mul99] and forwarded along with Sohoni [MS01, MS08] and212

others9. At a high level, it aims to resolve the P
?
= NP question via a resolution of Valiant’s213

algebraic analog, the VP vs VNP conjecture [Val79a]. Importantly, GCT had the potential,214

in part, because it overcame the three barriers. However, Panova recently discussed that the215

study of Kronecker and plethysm coefficients has effectively stagnated the progress of the GCT216

program [IP17, BIP19, DIP20]. In particular, for the GCT to progress, asymptotic represen-217

tation theoretic multiplicities need to be studied, which can then be used to understand the218

computational complexity lower bounds [Pan23]. In summary, the GCT program, as of 2025219

and except for the general approach of resolving the permanent versus determinant question220

(borrowed from previous approaches), has almost stagnated and is not a strong contender to221

separate the complexity classes P and NP in the near future.222

The progress on the three promising approaches mentioned above has either stagnated or is a223

long shot from a solution. Here, we include a discussion because they overcome the three barriers224

in complexity theory and directly relate to our paper’s overall topic.225

Finally, we acknowledge that none of the six arguments presented above rule out the possibility226

of a new approach to proving P ̸= NP10. However, we stress that a constructive proof for P =227

NP would support the present theory – specifically, explain the presence of barriers, the absence of228

exponential lower bounds, and the lack of significant progress despite efforts in proving P ̸= NP.229

7We borrow the use of the term ironic complexity theory from Aaronson’s overview of the topic in Section 6.4 of
[Aar16] where he primarily discusses the work of Williams.

8The definitions of determinant and the permanent are the standard definitions used for any square n× n matrix.
9We refer the reader to [Mul11] for a formal overview of GCT and to [Mul12] for an informal one.

10We kindly refer the reader to [Coo03, Wig06, Aar16] for a detailed discussion on the importance and progress on

solving P
?
= NP question and to [Wig09, For09, Var10, For21] for a relatively non-technical discussion.
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Relevance to the MVC: The research on proving P ̸= NP is connected to the MVC in two ways:230

(i) barriers in complexity theory do not prevent an algorithm for the MVC and (ii) given that all231

NP-complete problems are “equivalent” in a certain technical sense, an exponential (or more gen-232

erally, a super-polynomial) lower bound for one of the them (or for any analogous lower bound233

programs) would imply that the MVC cannot be solved efficiently. However, no such lower bounds234

are known. In the other direction, our proof of P = NP wouldn’t be a total disaster for lower235

bounds research, too. This is because our result would adhere to the known theories in that it will236

provide a polynomial upper bound to the lower bounds instead of the current exponential upper237

bound. Also, while there are such indirect implications, none of the studies, to the best of our knowl-238

edge, provide insight to directly improve our understanding of the vertex cover problem in any way11.239

240

In summary, given the state of research, we do not have a technical reason (“barrier”) that would241

prohibit (“lower bound”) us from having a polynomial-time algorithm to solve an NP-complete242

problem, namely the MVC, let alone the VC− CBG. On the contrary, an algorithm for the VC− CBG243

would validate our arguments and explain many current theories in computational complexity liter-244

ature! Hence, we now shift our discussion to some non-computational aspects of graph theory with245

a focus on the research relevant to vertex covers and, specifically, on research that facilitates the246

discovery of an algorithm for an NP-complete variant of the MVC in Part II of the paper.247

1.3 Some Non-Computational Aspects of Graph Theory248

Since Euler (formally) introduced graphs to solve the Königsberg Bridge problem12 in 1736 [Eul36],249

the field of Graph Theory has evolved and found applications in various areas, including computer250

science, medicine, and social science. Here, we discuss aspects of graph theory relevant to this paper.251

Matching Theory: A matching M of a graph G is a set of edges such that no two edges in M252

share a common vertex. Three variants of matching have been studied extensively. (i) Maximal253

Matching: A matching M is maximal if every edge in graph G has a non-empty intersection with254

at least one edge in matching M . (ii) Maximum Matching: A matching M is maximum if M is255

maximal and the size of M is the largest possible for the given graph. (iii) Perfect Matching: A256

matching M is perfect if every vertex v of the graph G is incident to an edge of the matching.257

Existence of a Matching: Each graph has at least one maximal matching and one maximum match-258

ing (by definition). However, no such trivial guarantee is known for the existence of a perfect match-259

ing in a given graph, except for the trivial observation that no graph with an odd number of vertices260

has a perfect matching. Hence, the existence of a perfect matching in a given graph has been studied261

extensively. Here, we discuss a few relevant seminal papers on the existence of a perfect matching.262

One of the first papers on perfect matching was by Petersen, who, in 1891, showed that every263

cubic (also called 3-regular or trivalent) bridgeless (also called isthmus-free or having no cutedge264

or 2-edge-connected) graph has at least one perfect matching (also called a 1-factor) [Pet91]. A265

relaxation to the bridgeless condition is known where every cubic graph with at most 2 bridges266

has at least one perfect matching. Next, Hall gave a characterization of the existence of a perfect267

matching in bipartite graphs (Hall’s Marriage Theorem) [Hal35]. A generalization of these results is268

due to Tutte who characterized arbitrary graphs that do not have a perfect matching [Tut47]. This269

is further generalized by the Tutte-Berge formula to include infinite graphs.270

11We stress that we are aware of some of the results that shed light on some of the NP-complete problems. For
example, Williams showed that any algorithm for the MVC and other related problems like SAT and independent set
need at least n2 cos(π/7) ≈ n1.8019 time to be solved if they use no(1) space [BW15, Wil19]. Recently, it was shown
that any algorithm using no(1) space cannot be solved in n2/ logc(n) time for some constant c > 0 [Wil25]. However,
these results do not improve our understanding of the vertex cover problem per se, especially its graphical properties.
Interestingly, the above-stated result can be a meta argument within the ICT argument because the stagnancy of
the 2 cos(π/7) bound shows that no known technique can improve this number and hence, we have a long way to go
before proving L ̸= NP, let alone PSPACE ̸= P or P ̸= NP.

Nonetheless, we note that the algorithm in Part II adheres to these time-space bounds even when the algorithm is
for the restricted case where the graphs are cubic bridgeless graphs. Additionally, we suspect the time complexity for
the MVC on graphs may be a higher-order polynomial or have a huge constant. For instance, a preliminary analysis
shows that if the time complexity of an algorithm to solve the VC− CBG is O(poly(m,n)) where poly(m,n) is some (high
order) polynomial in the number of vertices (m) and the number of edges (n), say m5 · n4, then the time complexity
of the algorithm to solve MVC on (i) 4-regular graphs would be O(68, 719, 476, 736 · poly(m,n)), (ii) 5-regular graphs
would be O(322, 687, 697, 779 · poly(m,n)), (iii) 6-regular graphs would be O(3.108710029642957 · 1016 · poly(m,n)),
and so on. However, we leave this analysis for future work.

12The Königsberg Bridge problem was to determine whether it was possible to walk through the city of Königsberg
(now Kaliningrad, Russia), crossing each of its seven bridges exactly once. Euler proved it is impossible to do so.
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Finding a Matching: The existence of maximum matching in every graph and the research on271

the existence of perfect matching in a given graph resulted in two research foci: (i) counting the272

number of matchings in a graph and (ii) attempts to find a matching, especially efficiently. For273

instance, for cubic bridgeless graphs, it was conjectured [LP09] (Conjecture 8.1.8) that there are274

exponentially many perfect matchings in every cubic bridgeless graph. This was proven [EKK+11]275

through a series of incremental results that (a) gradually improved the lower bound for the general276

case [EPL82, KSS09, EŠŠ+10, EK+12] and (b) proved the exponential bound for special graphs277

[Voo79, Oum09, CS12]. Next, we discuss the research on finding a matching. In particular, in the278

context of this paper, we discuss Berge’s Theorem [Ber57], which is at the heart of the Blossom279

Algorithm [Edm65] that finds a maximum matching in a graph.280

Berge’s Theorem, stated in 1957, relies on the concepts of alternating paths and augmenting281

paths in a graph G with respect to (w.r.t.) a given matching M . An alternating path in a graph282

is a path (i) that starts from a vertex v that is not incident to any edge in M and (ii) whose283

edges alternate between not being in M and being in M (or being in M and not being in M). An284

augmenting path is an alternating path starting and ending on two distinct vertices that are not285

incident to any edge in M . An augmenting path consists of an odd number of edges because the286

number of edges in an augmenting path that is not in M is one more than the number of edges in287

M . Using these concepts, Berge proved that given a matching M , M is a maximum matching if and288

only if there is no augmenting path in the graph G w.r.t. matching M . Consequently, given any289

matching M , one can find a maximum matching by using augmenting paths [Edm65].290

Overall, we discussed some non-computational aspects of matching theory. We focused on un-291

derstanding the existence of perfect matchings (particularly, Petersen’s Theorem) and on theories to292

count and find matchings (particularly, Berge’s Theorem towards finding the maximum matching).293

Graph Theory and Vertex Cover: We now assess the relation between the aforementioned294

topics in graph theory and vertex cover. Specifically, we understand the relation between the maxi-295

mum matching and the minimum vertex cover and explore our known understanding of the vertex296

cover on cubic bridgeless graphs.297

Matching and Vertex Cover: Matching of a graph and the vertex cover of a graph are closely re-298

lated. Just like maximum matching, a minimum vertex cover always exists (by definition). Addi-299

tionally, given an arbitrary graph, the size of the minimum vertex cover is at least the size of the300

maximum matching. In case of the existence of a perfect matching, the size of the minimum vertex301

cover is at least m
2 . If the graph is bipartite, then the size of the maximum matching is equal to302

the size of the minimum vertex cover (Konig’s Theorem [Kon31]). However, despite such numeri-303

cal relations between maximum matching and minimum vertex cover, there is no known structural304

relation between the two13. Moreover, like Berge’s Theorem is to maximum matching, there is no305

such analog to the minimum vertex cover.306

Cubic Bridgeless Graphs and Vertex Cover: Regular graphs have been extensively studied from307

computational (e.g., [AKS11, Fei03]) and non-computational (e.g., see page 585 of [Wes01] for a list308

of mentions of the words regular, 3-regular, and k-regular) perspectives. More specifically, for the309

non-computational aspects, regular graphs and particularly 3-regular graphs have been well-studied310

in the matching theory. Importantly, starting with Petersen’s paper [Pet91], cubic bridgeless graphs311

have been a focus. However, no such study of vertex cover on cubic bridgeless graphs exists. Con-312

sequently, no computational papers focus on the MVC on cubic bridgeless graphs.313

314

In summary, we focused our discussion on the existence of matchings in graphs (especially perfect315

matching in a cubic bridgeless graph) and the theories that help us count the number of matchings316

and the (non-computational, graph-theoretic) results that are used to find a matching (especially317

Berge’s Theorem for finding a maximum matching)14. Next, in the context of vertex cover, we318

observed that the otherwise well studied cubic bridgeless graphs are not studied for the vertex cover.319

Additionally, there is no analog of Berge’s Theorem for the minimum vertex cover problem. Hence,320

in this paper, we focus on understanding the non-computational aspects of the minimum vertex cover321

in cubic bridgeless graphs. In turn, we study the complexity of the corresponding computational322

problem of finding the minimum vertex cover in cubic bridgeless graphs.323

13By structural relation, we mean the possibility of some relation between the pairs of endpoints of the edges in
perfect matching (or maximum matching) and the vertices in minimum vertex cover.

14For a curious reader, we refer them to some textbooks that discuss the amazing work done in graph theory
([BLW86, Gib85, BM08, Wes01, LP09]).
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Section Summary: We summarize the key observations:324

• Vertex Cover: There is an extremely exciting line of work to understand the computational325

complexity of the minimum vertex cover problem (MVC), especially around its (in)approximability.326

However, no work aims to either find an algorithm for an NP-complete variant of the MVC or327

aims to significantly reduce the factor 2 approximation successfully. (Also, given that we dive328

deep into the differences between the variants of the MVC, we omitted the discussion on the329

research progress of every other NP-complete problem as it is beyond the scope of this paper,330

even when all NP-complete problems are “equivalent” in a certain technical sense15.)331

• P
?
= NP: The rich breadth and depth of research surrounding an answer for the P

?
= NP332

question has resulted in (i) three barriers in complexity theory that do not allow easy separation333

of complexity classes P and NP. Rather, a (constructive) proof for P = NP may explain334

the existence of these barriers! (ii) The programs that explore the lower bounds and that also335

overcome the barriers do not prohibit a polynomial-time for the MVC, let alone for the restricted336

case of the MVC on cubic bridgeless graphs.337

• Matching and Cubic Bridgeless Graphs: We studied some of the amazing non-computational338

aspects of graph theory. Specifically, we learned that: (i) Every cubic bridgeless graph has339

a perfect matching. (ii) Berge’s Theorem proves that a matching is maximum if and only if340

there is no augmenting path w.r.t. the given matching. There is no analog of Berge’s Theorem341

for the MVC. (iii) The vertex cover problem on cubic bridgeless graphs has not been studied.342

These observations are essential for our paper, especially for the algorithm in Part II. We partic-343

ularly stress the importance of the following three results for our subsequent discussion: Petersen’s344

Theorem in [Pet91], Berge’s Theorem in [Ber57], and the Blossom Algorithm [Edm65]. We also345

assume a basic familiarity with standard algorithmic techniques. Finally, we make the following346

contribution using these observations:347

Contribution: In this study on the vertex cover problem on cubic bridgeless graphs (VC− CBG),348

we prove that (i) VC− CBG is NP-complete (Theorem 1) and (ii) VC− CBG ∈ P (Theorem 2).349

More specifically, we work on an understudied problem, the vertex cover problem on cubic350

bridgeless graphs (VC− CBG). In Part I, we show that VC− CBG is NP-complete by reducing from351

a known NP-complete problem, namely, the vertex cover problem on cubic graphs [GJS74, GJ02].352

Next, in Part II, we present the core contribution of the paper: an unconditional deterministic353

polynomial-time algorithm for the VC− CBG, which is spread over three phases. Phase I leverages354

the knowledge of the existence of a perfect matching in every cubic bridgeless graph [Pet91] to find355

a perfect matching for the given graph using the Blossom algorithm [Edm65]. Phase II uses the356

perfect matching and a breadth-first search tree to create an augmented version of the (vanilla)357

2-approximation algorithm for the vertex cover problem. This augmented algorithm populates a358

novel data structure called the “represents table”, which stores the information of each endpoint359

picked by the augmented algorithm and the neighbors of each endpoint. Phase III introduces a novel360

technique called the “diminishing hops”. The use of a diminishing hop to find a minimum vertex361

cover is analogous to the use of an augmenting path to find a maximum matching [Ber57]. The362

amalgamation of these three phases results in an algorithm for the VC− CBG. As mentioned earlier,363

our work conforms to the existing theories in computational complexity literature and provides364

a rationale for the existence of the known barriers in complexity theory. Additionally, our work365

provides a constructive algorithm for VC− CBG by focusing on improving the understanding of the366

graph theory-related aspects of VC− CBG.367

Organization: In Section 2, we fix the notation used and define the computational problems368

being worked on. In Part I, we prove VC− CBG is NP-complete by showing that VC− CBG ∈ NP369

and subsequently showing that VC− CBG is NP-hard by providing a polynomial-time reduction from370

a known NP-hard problem. In Part II, we present an unconditional deterministic polynomial-time371

algorithm for the VC− CBG, which implies VC− CBG ∈ P. Each part begins with a brief introduction,372

a theorem statement, and an overview of its sections.373

15Given the massive problem space of NP-complete problems, we acknowledge the possibility that our work may
bear similarities to, say, some random, seemingly unrelated NP-complete problem’s approximation algorithm or its
hardness of approximation or an algorithm for its restricted case. However, to the best of our knowledge, no such
known similarity exists.

9



2 Notation and Preliminaries374

We kindly refer the reader to standard texts in theoretical computer science (TCS) for the definitions375

of complexity classes P and NP and other definitions in complexity theory such as polynomial-time376

reductions and NP-completeness. For example, for a lucid overview, please refer to Sections 2.1 and377

2.2 in [Kho19], which is an interesting paper discussing foundational work leading to the proof of378

the 2-to-2 Games Theory. For comprehensive definitions and discussion, please refer to a handbook379

of TCS [VL91] or to some of the standard TCS textbooks [KT06, GJ02, CLRS22]. We treat these380

standard definitions as done in the literature. Additionally, our algorithm treats a graph as a set381

of vertices and a set of edges. Hence, throughout the paper, we perform standard set operations382

on a given graph. Therefore, graph operations implicitly follow all standard set theory laws (e.g.,383

associative, commutative, etc.). See Appendix B of [CLRS22] for details on set operations and laws.384

We now define the computational problems related to finding the vertex cover of a given graph.385

First, we define the search/optimization problem:386

Definition 1 (Minimum Vertex Cover Problem (MVC)). Given a graph G, what is the smallest387

non-negative integer k such that the graph G has a vertex cover S of size k?388

Next, we restate the above as a decision problem and formalize the difference between the search389

version and the decision version of the computational problem:390

Definition 2 (Vertex Cover Problem (VC)). Given a graph G and a non-negative integer k, does391

the graph G have a vertex cover S of size at most k?392

Unless stated otherwise, we henceforth discuss solving VC (i.e., the decision version of the vertex393

cover problem as stated in Definition 2), which is NP-complete. Next, to define the computational394

problems corresponding to the variants of VC we use in the paper, we first define the graphs that395

will be used.396

Definition 3 (Cubic Graphs). A cubic graph, also called a 3-regular graph or a trivalent graph,397

refers to a graph in which each vertex has a degree of three.398

Definition 4 (Bridgeless Graphs). A bridgeless graph, also known as a 2-edge-connected graph or399

an isthmus-free graph or a graph with no cutedge, is a graph that does not contain an edge, called a400

bridge16, whose deletion increases the number of connected components in the graph.401

Consequently, a cubic bridgeless graph is a graph in which each vertex has a degree of three and402

there are no bridges. Henceforth, graphs refer to arbitrary graphs. We specifically use the terms403

cubic and bridgeless when necessary. Finally, we define the computational problems that use cubic404

and bridgeless graphs, which is the focus of this paper.405

Definition 5 (Vertex Cover Problem on Cubic Graphs (VC− CG)). Given a cubic graph G and a406

non-negative integer k, does the cubic graph G have a vertex cover S of size at most k?407

Definition 6 (Vertex Cover Problem on Cubic Bridgeless Graphs (VC− CBG)). Given a cubic bridge-408

less graph G and a non-negative integer k, does the cubic bridgeless graph G have a vertex cover S409

of size at most k?410

While VC− CG is known to be NP-complete [GJS74], the complexity of the VC− CBG is not411

known. Finally, please note that we define other terminology used in this paper in situ.412

What is an unconditional deterministic polynomial-time algorithm? Throughout the pa-413

per, an algorithm refers to an exact algorithm unless noted otherwise. An unconditional algorithm414

does not depend on any assumptions. A deterministic algorithm always produces the same output415

for a given input. Finally, the number of operations of a polynomial-time algorithm is upper bounded416

by a polynomial in the size of the input (denoted by O()). An example of an unconditional deter-417

ministic polynomial-time algorithm is the AKS primality test algorithm that takes polynomial time418

in the size of the input (number of bits to represent a number (log n)) to deterministically compute419

whether a given number is prime or not without relying on any hypothesis/conjecture [AKS04].420

16In other words, an edge is a bridge if and only if it is not contained in any cycle.
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Part I421

VC− CBG is NP-complete422
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In this part, we establish the NP-completeness of the vertex cover problem on cubic bridgeless graphs423

(VC− CBG) by reducing from a known NP-complete problem, namely, the vertex cover problem on424

cubic graphs (VC− CG).425

The vertex cover problem on cubic graphs is trivially known to be NP-complete because the426

vertex cover problem on graphs with vertex degree at most three is NP-complete [GJS74] (GJS74427

calls vertex cover as node cover). However, the hardness of the VC on cubic bridgeless graphs does428

not follow the hardness of the VC on cubic graphs. This is because the stipulation that the graph is429

bridgeless introduces a restriction to the family of cubic graphs being considered. Such structural430

restrictions are known to make the VC problem tractable. For example, the VC on claw-free graphs17431

is in P as a consequence of the maximum independent set problem on claw-free graphs being in432

P [Sbi80, Min80] (we refer the reader to a survey on claw-free graphs for more details [FFR97]).433

Hence, restricting the cubic graphs to being bridgeless requires us to establish its computational434

complexity. Furthermore, the reduction used to prove the hardness of the VC on graphs with vertex435

degree at most three in Theorem 2.418 in [GJS74] does not necessarily consist of a bridgeless graph.436

Thus, its reduction cannot be used to establish the hardness of the VC on cubic bridgeless graphs.437

In summary, we need to establish the hardness of the VC on cubic bridgeless graphs because (i)438

the stipulation of graphs being bridgeless introduces a restriction to the family of cubic graphs being439

considered and such restrictions may make the problem tractable and (ii) the reduction used to prove440

the hardness of the VC on graphs with vertex degree at most three consists of bridges. Therefore,441

we prove the following theorem in Part I:442

Theorem 1. The vertex cover problem on cubic bridgeless graphs (VC− CBG) is NP-complete.443

Part I Contribution and Organization: We show that VC− CBG is NP-complete (Section 3).444

3 Proof of NP-completeness of VC− CBG445

For consistency, we restate the theorem we prove:446

Theorem (1 restated). The vertex cover problem on cubic bridgeless graphs (VC− CBG) is NP-447

complete.448

Proof. The proof consists of two parts: (i) we show VC− CBG ∈ NP and (ii) we show VC− CBG is449

NP-hard by giving a polynomial time reduction from an instance of a known NP-hard problem,450

namely, the vertex cover problem on cubic graphs (VC− CG), to an instance of the vertex cover451

problem on cubic bridgeless graphs (VC− CBG). The latter is denoted by VC− CG ≤P VC− CBG.452

VC− CBG ∈ NP: Given a cubic bridgeless graph G = (V,E), a candidate solution consisting of453

a set of vertices S ⊆ V , and a non-negative integer k, we can verify in polynomial time whether454

vertices in candidate solution S form a vertex cover of size at most k or not.455

VC− CG ≤P VC− CBG: We reduce an instance of the vertex cover problem on cubic graphs (VC− CG)456

to an instance of the vertex cover problem on cubic bridgeless graphs (VC− CBG).457

A. Construction. Given an instance of VC− CG consisting of graph G = (V,E), we reduce it to458

an instance of VC− CBG consisting of graph G′ = (V ′, E′) as follows:459

Vertices: We have one vertex xi ∈ X for each vertex vi ∈ V and 6m+ 10n dummy vertices d ∈ D460

where m corresponds to the number of vertices in the graph G and n corresponds to the number of461

edges in the graph G. Specifically, we divide the dummy vertices into two types of blocks:462

• Block type B1 consists of n blocks and each block consists of ten vertices, namely, vertex463

i ∈ B1, ∀ i ∈ [0, 9].464

• Block type B2 consists of m blocks and each block consists of six vertices. Specifically, for465

each vertex u ∈ G, we have vertices {u′, u′′, u′1, u′2, u′′1 , u′′2} ∈ B2.466

17A claw in a graph is a complete bipartite subgraph K1,3. A claw-free graph is a graph that does not have a claw
as an induced subgraph.

18Theorem 2.4 is Theorem 2.6 when referring to the journal version of the paper in Theoretical Computer Science,
Volume 1, Issue 3, February 1976, Pages 237-267.
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Hence, there are 10 ·n dummy vertices in blocks of type B1 and 6 ·m dummy vertices in blocks of467

type B2. Thus, |D| = 10n+ 6m. Overall, we set X = {x1, . . . , xm} and the dummy vertex set D =468

{d1, . . . , d6m+10n}. Hence, the vertex set V ′ = X∪D is of size |V ′| = |X|+ |D| = (m)+(6m+10n) =469

7m+ 10n vertices.470

Vertex Cover Size: We set the target vertex cover size to be k + 3m+ 6n.471

Edges: Recall that (i) the target instance should form a cubic bridgeless graph and (ii) w.l.o.g.,472

we have assumed the graphs being considered are simple connected, which means the given instance473

of VC− CG contains no loops, no multiple edges, and no unconnected components19. Therefore, to474

get a bridgeless graph, we replace each edge e = (u, v) ∈ E in graph G to ensure no bridges remain.475

To do so, we first create a list L consisting of each edge and its endpoints e = (u, v) ∈ E. Next,476

consider a snapshot of the graph G depicting an arbitrary edge e ∈ E connecting vertices u and v in477

the given instance of VC− CG. The endpoints u and v are connected to the vertices {a, b, c, d} ∈ V ,478

which are further connected to other vertices not depicted here or among themselves or both. We479

are given a cubic graph, hence each snapshot centered on edge e looks as follows:480

a

b

c

d

u v
edge e

Figure 1: A snapshot of an instance of VC− CG centered on an edge e ∈ E.

Next, for each edge e = (u, v) ∈ L connecting vertices u and v in graph G of the instance of481

VC− CG, we perform the following “atomic” operations20 where we (i) split the edge e by connecting482

it to a subgraph and (ii) split each endpoint u and v into three vertices each, as discussed below.483

This ensures that the graph remains cubic while becoming bridgeless21.484

• Splitting an Edge e: The edge e connecting the vertices u and v in an instance of VC− CG is485

split and connected via a subgraph consisting of dummy vertices from Block type B1 (yellow486

vertices) as depicted below:487

u v0 1

2 3 4 5

6 7 8 9

Figure 2: Splitting the edge e from the instance of VC− CG by inserting a subgraph of dummy vertices
from Block type B1 in the instance of VC− CBG. Each dashed line denotes the existence of an edge.

19W.l.o.g., we assumed that we use simple connected graphs. This assumption is rather trivial. If one aims to
overcome it, we can first prove that the VC on cubic simple graphs is NP-complete, which can then be used to prove
that VC− CBG is NP-complete. The former can be proved easily by removing each multiple edge and each loop and
adding an edge that is connected to a subgraph of five dummy vertices such that the graph remains cubic.

20Here, the term “atomic” operation is used from a mathematical perspective where it refers to an operation that
cannot be simplified or further broken down (in the context of this paper) and not from a computer science perspective
used in the context of concurrent programming.

21In principle, a reduction to prove the same result can be constructed such that this exercise of splitting an edge
and endpoints is done only for edges that are bridges. However, it entails (i) complications caused by the introduction
of a variable, say λ, that counts the number of bridges in the given instance of graph G and (ii) needing a complex
proof that encovers all cases of an edge being surrounded by r bridges where r is an integer between 0 and 4 (both

inclusive) and in turn there being 5 cases encompassing
(4
r

)
possibilities about which of the four edge is a bridge.

Therefore, we construct the discussed generalized reduction instance, which handles each edge, to simplify the proof.
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• Splitting Endpoints of Edge e: Each endpoint u and v that is connected by the edge e488

in an instance of VC− CG is split into three vertices each. We use dummy vertices from Block489

type B2 (red vertices) and subsequently connect them as shown below:490

a

b

c

d

u v

u′

u′′

v′

v′′

Figure 3: Splitting endpoints u and v into three vertices each in VC− CBG. The two dashed lines in
the snapshot denote the existence of a Block Type B1 subgraph depicted in Figure 2.

• Updating the List L of Edges: Remove the edge e connecting the endpoints u and v from491

the list L. Next, update the following edges in the list L:492

– edge connecting endpoints a and u is replaced by an edge connecting endpoints a and u′493

where the endpoint u′ is the newly created vertex from Block type B2, which was created494

by splitting the endpoint u495

– edge connecting endpoints b and u is replaced by an edge connecting endpoints b and u′′496

where the endpoint u′′ is the newly created vertex from Block type B2, which was created497

by splitting the endpoint u498

– edge connecting endpoints c and v is replaced by an edge connecting endpoints c and v′499

where the endpoint v′ is the newly created vertex from Block type B2, which was created500

by splitting the endpoint v501

– edge connecting endpoints d and v is replaced by an edge connecting endpoints d and v′′502

where the endpoint v′′ is the newly created vertex from Block type B2, which was created503

by splitting the endpoint v504

The list L is updated after every split of edge e and the split of the corresponding endpoints505

that connect the edge e.506

The above-discussed construction operations are “atomic” in that each edge e in the list L is split507

following the same procedure discussed above, and both its endpoints, independent of whether they508

are dummy vertices or not, are split following the same procedure discussed above. Each “atomic”509

operation transforms the given snapshot of VC− CG (Figure 1) into the following snapshot of the510

(sub-)graph of VC− CBG:511

a

b

c

d

u v

u′

u′′

v′

v′′

0 1

2 3 4 5

6 7 8 9

Figure 4: A snapshot of an instance of VC− CBG corresponding to the snapshot of VC− CG (Figure 1).
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Finally, it remains to be discussed how a series of n “atomic” operations, one for each edge in512

the instance of VC− CG, leads to the complete construction of an instance of VC− CBG. This implies513

that a total of n edges are split. We also discuss the need for 10n+ 6m dummy vertices. Next, we514

show that there is no edge in the constructed instance of VC− CBG that is not a part of at least one515

cycle. In turn, it implies the constructed instance of VC− CBG is bridgeless (and, of course, cubic):516

• Number of “Atomic” Operations is n: The list L starts with n edges corresponding to517

the n edges in the instance of VC− CG. Subsequently, after each “atomic” operation, the split518

edge is removed from the list L. Hence, n “atomic” operations are carried out.519

• Number of Dummy Vertices in Block Type B1 is 10n: This is trivial because when an520

edge is split, the split edge is replaced by a graph consisting of 10 vertices (Figure 2). There521

are n edge split operations, which result in 10n dummy vertices in Block type B1.522

• Number of Dummy Vertices in Block Type B2 is 6m: Each vertex has a degree of523

three. Hence, the operation of splitting of an endpoint occurs three times for each vertex.524

More specifically:525

– Initially, each endpoint u is connected to three edges that will be split.526

– Next, when the endpoint u is split (for the first time), the vertex u gets connected to527

two dummy vertices u′ and u′′ (Figure 3). By design, the vertex u is now not connected528

to any edge that will be split because (i) one of the edges it was connected to got split529

and (ii) each of the remaining two edges that need to be split are now connected to the530

dummy vertices u′ and u′′, respectively.531

– The dummy vertex u′ is connected to one edge that needs to be split. Hence, when that532

edge is split, the endpoint u′ is split, and in turn, it is connected to two dummy vertices533

u′1 and u′2. By design, the dummy vertex u′ is now not connected to any edge that will534

be split. Simultaneously, the two dummy vertices u′1 and u′2 are also not connected to535

any edge that will be split.536

– The dummy vertex u′′ is also connected to one edge that needs to be split. Hence, when537

the edge is split, vertex u′′ is split and connected to two dummy vertices u′′1 and u′′2 , in538

line with what was done for dummy vertex u′.539

– Overall, each vertex u is split into 6 dummy vertices {u′, u′′, u′1, u′2, u′′1 , u′′2}. There are m540

vertices in total, which results in 6m dummy vertices.541

• Each Edge in the Constructed Instance of VC− CBG is a Part of At Least One542

Cycle: During an “atomic” operation, when the two endpoints of an edge is split (Figure 3),543

the resultant dummy vertices are connected such that (i) they form a cycle and (ii) they form a544

boundary around (a) the endpoints that were split and (b) the 10 dummy vertices from Block545

type B1 that were inserted to split the edge. The combination of points (i) and (ii) ensures that546

the edges connecting the endpoints that were split and the edges connecting the 10 dummy547

vertices from Block type B1 are also part of a cycle. Thus, an “atomic” operation guarantees548

that each new edge is part of a cycle. Consequently, after n “atomic” operations, each edge549

will be part of at least one cycle. The reason for this is mainly that there’s at least one edge550

that belongs to the boundary resulting from one “atomic” operation and also to the boundary551

resulting from another. This fact can be interpreted in two ways: (i) two cycles share at least552

one edge in common or (ii) each “atomic” operation enlarges the boundary to encompass all553

the newly inserted edges. In either case, it means that no edge is a bridge in the constructed554

instance of VC− CBG. Therefore, the reduction ensures that the graph is bridgeless.555

• Each Vertex in the Constructed Instance of VC− CBG has Degree Three: When a556

vertex is split, the split vertex and the corresponding dummy vertices are connected to three557

other vertices. When an edge is split, there are two dummy vertices in the subgraph of Block558

type B1 that are connected to the two endpoints of the split edge, and each of the remaining559

eight dummy vertices is connected internally with three other vertices. Hence, trivially, each560

vertex has a degree of three.561

This completes our construction for the reduction, which is a polynomial time reduction in the562

size of n and m.563

We refer the reader to Figure 5, which depicts a snapshot of the constructed instance of VC− CBG564

when each of the five edges depicted in the snapshot of the instance of VC− CG (Figure 1) is split.565

Specifically, it denotes execution of 5 “atomic” operations. We stress that the figure is a snapshot566

of the reduction taking place; it is for illustrative purposes and depicts a stage of the reduction.567
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Figure 5: A snapshot of an instance of VC− CBG that corresponds to an instance of VC− CG (Figure 1).
The construction depicts the transformation of five edges (and corresponding six vertices) shown
in Figure 1; the edges that were not depicted are not transformed. Each dashed line denotes the
existence of an edge.
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B. Proof of Correctness.568

Claim 1. We have a vertex cover S of size at most k that satisfies e ∩ S ̸= ∅ for all edges e ∈ E if569

and only if we have a vertex cover S′ of size at most k + 3m + 6n that satisfies e′ ∩ S′ ̸= ∅ for all570

edges e′ ∈ E′.571

(⇒) If the instance of the VC− CG problem is a yes instance, then the corresponding instance of572

VC− CBG is a yes instance.573

Six Vertices are Selected from each Block type B1: Consider any one block of ten candidates574

from the n blocks of type B1. The size of a minimum vertex cover for the subgraph consisting of575

those ten vertices is six. Adding an edge and a vertex to the subgraph can only increase the size of576

the minimum vertex cover. Hence, for each block in Block type B1, we select six vertices, namely,577

vertex numbers ending with 0, 1, 3, 5, 6, or 8, into the vertex cover S′ of the instance of VC− CBG.578

This results in a total of 6n vertices in Vertex Cover S′ of the instance of VC− CBG.579

Three Vertices are Selected from each of the m− k Blocks of type B2 that Correspond580

to m − k Vertices Not in Vertex Cover S of VC− CG: For each vertex u not in the vertex581

cover S of an instance of VC− CG, we have three vertices in the vertex cover S′ of an instance of582

VC− CBG. Specifically, for each vertex u /∈ S, we have vertex u and corresponding dummy vertices583

u′ and u′′ in the vertex cover S′. We know that for each vertex u ∈ G, we split it and have584

{u, u′, u′′, u′1, u′2, u′′1 , u′′2} ∈ G′. These seven vertices form a linear chain. Additionally, the vertices u,585

u′, and u′′ are all connected to either a vertex ending with 0 or a vertex ending with 1 from one of586

the corresponding blocks of Block type B1. This means that vertices u, u′, and u′′ may or may not587

cover edges connecting them to vertices ending with 0 or vertices ending with 1 because the latter588

two are already in the vertex cover S′. Finally, given that vertex u /∈ S, all three vertices connected589

to vertex u in graph G will be in the vertex cover S. Hence, vertices u′1, u′2, u′′1 , and u′′2 in graph G′
590

need not cover any edges that are not part of the linear chain (more on this in the next paragraph).591

Therefore, we use the following proposition on the minimum vertex cover on a linear chain graph:592

Fact 1. Given a linear chain graph G consisting of m vertices, the size of the minimum vertex cover593

for the graph G is ⌊m2 ⌋.594

The seven vertices form a linear chain. Therefore, the minimum size vertex cover for the seven595

vertices is of size three. We choose (central) vertices u, u′, and u′′ to form the minimum vertex596

cover. Given that there are m − k vertices that are not in the vertex cover S, it corresponds to597

3 · (m− k) vertices in the vertex cover S′. This results in an additional 3m− 3k vertices in Vertex598

Cover S′ of the instance of VC− CBG.599

Four Vertices are Selected from each of the k Blocks of type B2 that Correspond to k600

Vertices in Vertex Cover S of VC− CG: For each vertex u in the vertex cover S of an instance601

of VC− CG, we have four vertices in the vertex cover S′ of an instance of VC− CBG. Specifically, for602

each vertex u ∈ S, we have corresponding dummy vertices u′1, u′2, u′′1 , and u′′2 in the vertex cover S′.603

More specifically, if a vertex u is in the vertex cover S, then it covers all three edges connected604

to it. We call the three vertices connected to the vertex u via these three edges as neighbors of605

the vertex u. Additionally, we already discussed that corresponding vertices u, u′, and u′′ in the606

graph G′ need not cover any edges (other than the edges on the linear chain) as they are connected607

with vertices that are already in the vertex cover S′. Simultaneously, vertices u′1, u′2, u′′1 , and u′′2 , in608

addition to being connected to the vertices in the linear chain, are also connected to other dummy609

vertices in graph G′ that correspond to the neighbors of the vertex u in graph G. Therefore, the610

vertices u′1, u′2, u′′1 , and u′′2 must be included in the vertex cover S′. This is required to cover the611

edges linking these four vertices to the “dummy” vertices that correspond to the neighbors of vertex612

u from the original graph G. This arrangement corresponds to (mirrors) how vertex u itself covers613

all the edges to its neighbors in graph G22. In turn, all the edges in the linear chain are also covered.614

This results in the selection of 4 vertices in the vertex cover S′ for each of the k vertices in the615

vertex cover S. Hence, there are 4k more vertices in the vertex cover S′ of the instance of VC− CBG.616

Overall, for k vertices in the vertex cover S, we have 6n+ 3(m− k) + 4k = 4k+ 3m− 3k+ 6n =617

k + 3m + 6n vertices in the vertex cover S′. Hence, a yes instance of the VC− CG implies a yes618

instance of the VC− CBG such that the vertex cover S′ is of size at most k + 3m+ 6n.619

22This is the same reason that vertices u′1, u
′
2, u

′′
1 , and u

′′
2 in graph G′ need not cover any edges that is not part of

the linear chain when a vertex u is not in the vertex cover S.

17



(⇐) The instance of the VC− CBG is a yes instance when we have k + 3m + 6n vertices in the620

vertex cover S′. Then the corresponding instance of the VC− CG is a yes instance as well. More621

specifically, we have the following cases when an instance of the VC− CBG is a yes instance. The622

VC− CBG is a yes instance when the minimum vertex cover S′ contains:623

1. Six dummy vertices from each Block type B1, Two dummy vertices from m − k624

blocks of Block type B2, Four dummy vertices from k blocks of Block type B2, and625

m − k vertices from set X: This is the trivial case. The total number of vertices in the626

vertex cover S′ = 6n+2(m−k)+4k+m−k = 6n+2m+m−2k+4k−k = 6n+3m+k. Note627

that this setup corresponds to the proof discussed in the forward direction. Hence, the m− k628

vertices from the vertex set X that are in the vertex cover S′ denote the vertices in set V of629

graph G that are not in the vertex cover S. Consequently, the k vertices in the set X that are630

not in the vertex cover S′ denote the vertices that are in the vertex cover S. In summary, the631

corresponding instance of the VC− CG is a yes instance because the k vertices s ∈ S that form632

the vertex cover correspond to the k vertices in the set of vertices X \ (S′ ∩X).633

2. Six dummy vertices from each Block type B1 and k + 3m vertices from Block634

Type B2 and set X: The contribution of six dummy vertices from each Block type B1 is635

straightforward and non-consequential in the context of this case. Nonetheless, we can easily636

modify the six vertices selected to include vertices ending with 0 and vertices ending with 1 in637

the vertex cover S′.638

Here, we focus our discussion on the selection of k + 3m vertices from Block Type B2 and set639

X. There are multiple ways to select the k + 3m vertices that form a minimum vertex cover640

(in conjunction with the dummy vertices from B1). However, among all such vertex covers,641

there is at least one vertex cover that is the same as Case 1, namely, has two dummy vertices642

from m − k blocks of Block type B2, four dummy vertices from k blocks of Block type B2,643

and m − k vertices from set X. The reason relies on a property of a linear chain, especially644

of even size: we can have multiple minimum vertex covers depending on which vertices are645

selected. In particular, one of the vertices on the end of the linear chain can be replaced with646

its neighbor without affecting the size of the minimum vertex cover. Similarly, in our case,647

for each vertex u ∈ V , the corresponding vertices {u, u′, u′′, u′1, u′2, u′′1 , u′′2} ∈ V ′ form a linear648

chain, which allows manipulation of vertices selected in the vertex cover, even when the linear649

chain for us is of odd size. We discuss two points in this case:650

(a) three vertices from the linear chain are in the vertex cover S′: In the case of a651

linear chain of size seven (odd), the minimum vertex cover is of size three, and neither of652

the vertices at the end of the linear chain can be in the minimum vertex cover. There are653

m − k such linear chains where three vertices are in the minimum vertex cover S′. The654

m− k vertices not in the minimum vertex cover S correspond to these linear chains.655

(b) four vertices from the linear chain are in the vertex cover S′: When four vertices656

from a linear chain are in the minimum vertex cover S′, it implies that at least one of the657

vertices is included to cover an edge that is not in the linear chain. W.l.o.g., let us begin658

with an assumption that the vertices {u, u′, u′′1 , u′′2} (one vertex from the set X and three659

vertices from the Block type B2) are a subset of vertices that is in the vertex cover S′.660

Then, these vertices can be replaced by the vertices {u′1, u′2, u′′1 , u′′2} (four vertices from661

Block type B2) in the vertex cover S′ because the vertices ending with 0 and vertices662

ending with 1 from Block type B1 is in the vertex cover S′ and the corresponding edges663

need not be covered by vertices in the linear chain. In general, when four vertices from664

the vertex set {u, u′, u′′, u′1, u′2, u′′1 , u′′2} ∈ V ′ are in the minimum vertex cover S′, then any665

such combination of the four vertices can be replaced by vertices {u′1, u′2, u′′1 , u′′2} (four666

vertices from Block type B2). The instance of VC− CBG remains a yes instance with this667

modification. There are k such linear chains having four vertices in the minimum vertex668

cover S′. The k vertices in the minimum vertex cover S correspond to these linear chains.669

Overall, there are the 3(m − k) + 4k = k + 3m vertices from Block Type B2 and set X. In670

general, Case 2(b) shows that there is at least one minimum vertex cover S′ of size k+3m+6n671

that is the same as Case 1. Therefore, a yes instance of the VC− CBG corresponds to a yes672

instance of the VC− CG because the k vertices s ∈ S that form the minimum vertex cover673

correspond to the k vertices in the set of vertices X \ (S′ ∩X).674

These cases complete the other direction of the proof of correctness. In turn, it completes the overall675

proof that shows VC− CBG is NP-complete.676
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Part II677

VC− CBG ∈ P678
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In this part, we discover an unconditional deterministic polynomial-time exact algorithm for the679

vertex cover problem on cubic bridgeless graphs (VC− CBG). The lack of an algorithm, and more680

generally, research on the VC− CBG is both – quite surprising and unsurprising.681

(Relative) Lack of Research on the VC− CBG is Surprising: The matching theory within682

graph theory has received much attention. In particular, properties of a perfect matching and a683

maximum matching in a given graph have been studied extensively. Furthermore, matching in cubic684

bridgeless is also well-studied (see subsection 1.3). However, no analogous work that extensively685

discusses properties of the vertex cover23, and in particular, properties of the vertex cover on cubic686

bridgeless graphs is known. This is surprising because there is a known relationship between the687

sizes of a maximum matching and a minimum vertex cover for a given graph (Lemma 1). Hence, it688

is intuitive to explore the existence of a deeper relation between the two. Additionally, a minimum689

vertex cover always exists (by definition), just like a maximum matching. Hence, an analog to Berge’s690

Theorem [Ber57], which relates augmenting paths and maximum matching, should be explored.691

Overall, the Blossom Algorithm [Edm65] was preceded by rich graph-theoretic work on maximum692

matching, perfect matching, and factorization. This facilitated a proof to show that the correspond-693

ing computational problem of finding a maximum matching is in P even when the problem then694

seemed to be similar to other typical graph optimization problems that later turned out to be “hard”.695

Analogously, there is a need for us to better understand certain properties of the vertex cover.696

No Algorithm for VC− CBG is Unsurprising: While the lack of focus on understanding the697

properties of vertex cover, analogous to, say, Berge’s Theorem for maximum matching, is surprising,698

the lack of an algorithm for the VC and VC− CBG is unsurprising. Karp’s landmark paper on the699

twenty-one NP-complete problems brought the vertex cover problem (VC) to the attention of TCS700

researchers [Kar72]. Consequently, given that VC was proven to be NP-complete, understanding its701

hardness-related computational aspects has been a focus of TCS researchers (see subsection 1.1)24.702

Additionally, one of the natural approaches to discover an algorithm for an NP-complete problem703

(and prove P = NP) directly relies on finding a polynomial-size Linear Programming or Semidefinite704

Programming that projects onto the polytope whose extreme points are the valid solutions. This705

approach was ruled out through a series of results [Yan88, FMP+15, LRS15, CLRS16, Rot17, CŽ24].706

Hence, no effort on this front to find an algorithm for an NP-complete problem is unsurprising.707

Next, we strengthen our unsurprising position about a lack of an algorithm for the VC− CBG, even708

when certain restrictions on graphs, such as bipartite and claw-free, make the VC tractable. On the709

other hand, other restrictions on graphs, such as planar, do not affect the hardness of the VC. Hence,710

the surprisingly lack of understanding about the behavior of the vertex cover on bridgeless graphs,711

unsurprisingly, prohibits us from putting VC− CBG in either camps (let us momentarily turn blind712

for this paragraph to the fact that we just proved VC− CBG is NP-complete (Theorem 1)). Neither713

do we know how the VC behaves on bridgeless graphs, nor have the bridgeless graphs been studied714

on the other ten graph-based Karp’s NP-complete problems. Moreover, even when we did not know715

much about the existence of a perfect matching in cubic graphs, Petersen showed that every cubic716

bridgeless graph has a perfect matching [Pet91]. Hence, just like the bridgelessness restriction on717

cubic graphs “easily” improved our understanding of the existence of a perfect matching, we aim to718

assess whether the bridgeless condition is conducive to our understanding of the vertex cover.719

Overall, the absence of an algorithm for the VC− CBG is unsurprising because: (i) VC was proven720

NP-complete early and subsequent research focused on its hardness. (ii) VC− CBG lacks the tools721

like those that helped prove maximum matching is in P and uses the understudied bridgeless graphs.722

In summary, a lack of understanding of the non-computational aspects of the vertex cover (on723

cubic bridgeless graphs) is surprising. Simultaneously, the rich understanding of the computational724

aspects of the VC and an absence of an algorithm to solve the VC is unsurprising! As a result, we first725

improve our graph-theoretic understanding of the vertex cover on cubic bridgeless graphs. Then,726

we improve our understanding of the algorithmic aspects of the VC− CBG (and VC)25. We use the727

Petersen Graph (Figure 6) as a running example to facilitate our discussion henceforth.728

23For the purposes of this discussion, a “vertex cover” (and its variants) refers to a discussion of graph-theoretic
properties of the vertex covers and a “VC” (and its variants) refers to a discussion of the computational properties.

24These circumstances are strong reasons to speculate that the focus on the vertex cover shifted from graph theory-
based results to computational complexity-based results.

25Recall that the VC on 2-regular graphs is in P and the VC on 3-regular graphs is NP-complete. Hence, the VC on
3-regular graphs is the closest known problem to a variant of the VC in P. Next, if we consider this imaginative problem
space between the VC on 2-regular graphs and the VC on 3-regular graphs, the restrictive case of cubic bridgeless lies
somewhere in between these two ends. Hence, we are working on an algorithm for an NP-complete variant of VC that
is closest to the variant in P in the most conceivable way possible.
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Example 1. The Petersen Graph (Figure 6), a famous cubic bridgeless graph, is used as the given729

graph G throughout Part II.730
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Figure 6: Petersen Graph used for the running example.

We prove the following theorem in Part II:731

Theorem 2. The vertex cover problem on cubic bridgeless graphs (VC− CBG) is in P.732

Part II Contribution: We show that VC− CBG ∈ P.733

Part II Organization: In Section 4, we provide an overview of the three phases of an uncon-734

ditional deterministic polynomial-time algorithm for the VC− CBG. We also discuss new (graph-735

theoretic) concepts and properties of the vertex cover on cubic bridgeless graphs that are needed736

for designing the algorithm and subsequently proving its correctness. In Section 5, we state the737

algorithm (which is abstracted into multiple algorithms for improved understanding). In Section 6,738

we provide the proof of correctness of the algorithm. In Section 7, we discuss the time complexity739

of the algorithm by providing an upper bound on its running time as a polynomial function in the740

size of the input. This is facilitated by a step-by-step time complexity analysis.741

4 Algorithm Overview and Intermediate Results742

We provide an overview of the algorithm. We also define, observe, and prove new concepts needed743

to prove the correctness of the algorithm. The algorithm is divided into three phases (Figure 7):744

• Phase I - Find a Perfect Matching: The vertices are sorted lexicographically. Then, the745

Blossom Algorithm [Edm65] is used to find a maximum matching of the given graph. Given746

that we use cubic bridgeless graphs, the maximum matching is a perfect matching [Pet91]26.747

• Phase II - Populate a Novel Data Structure – Represents Table: A breadth-first search748

(BFS) tree is constructed by seeding on the first vertex selected from a lexicographically sorted749

list of vertices. Next, an augmented version of the maximal matching algorithm (folklore 2-750

approximation algorithm for the vertex cover problem) is used to sequentially select edges that751

are part of the perfect matching. The output of this exercise is used to populate a novel data752

structure called the “Represents Table” (Table 2). Specifically, the data structure stores (i)753

the endpoints of the edges picked by the maximal matching algorithm in a row and (ii) in the754

same row, the neighboring vertices of the endpoints in a given iteration.755

26The time complexity of the Blossom Algorithm is O(m2n). Some algorithms are known to (i) find maximum
matching faster than the Blossom Algorithm (for example, Micali and Vazirani’s O(

√
m · n) algorithm [MV80]) and

(ii) specifically find a perfect matching in a cubic bridgeless graph faster than the Blossom Algorithm (for example,
algorithms ranging from O(m log4m) [BBDL01] to O(m logm) [GW24]). However, the time complexity of the third
phase (Diminishing Hops) dominates the complexity of the Blossom Algorithm. Hence, using a faster algorithm
does not affect the overall time complexity of our algorithm. Moreover, the use of the Blossom Algorithm to find
a maximum matching, instead of a specific algorithm to find a perfect matching, facilitates future work that can
generalize our algorithm to other graphs.
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Input
Cubic Bridgeless 

Graph G
Integer k

Phase I 
Find Perfect Matching 

using Blossom Algorithm

Data
Graph G

Perfect Matching M
Phase II

Populate Data Structure 
“Represents Table”

(i) Create a BFS Tree

(ii) Run an Augmented Version of 
the 2-Approximation AlgorithmData

Represents Table R

Phase III
Do Diminishing Hops 

after Assigning “Scores” and 
Removing Vertices

Output
Yes, if Min Vertex 

Cover |S| ≤ k
No, Otherwise

Figure 7: A schematic representation of the three phases of the algorithm, with the corresponding
input and output data for each phase clearly indicated.

• Phase III - Diminishing Hops: The “Represents Table” is used to find the minimum vertex756

cover by: (i) assigning scores to each endpoint based on their “connectedness”, (ii) removing757

the vertices with low scores and (iii) using a new technique called diminishing hops, analogous758

to the use of augmenting paths in maximum matching (Berge’s Theorem [Ber57]).759

We now discuss each of these three phases in detail.760

4.1 Find a Perfect Matching761

The first phase of the algorithm consists of the use of the Blossom Algorithm to find a maximum762

matching of the given graph. The maximum matching, in our case, is a perfect matching.763

Definition 7 (Matching). Given a graph G, a matching M is a subset of the edges E such that no764

vertex v ∈ V is incident to more than one edge in M .765

Alternatively, we can say that given a graph G, no two edges in a matching M have a common766

vertex. Consequently, a maximum matching is a matching with the highest cardinality.767

Definition 8 (Maximum Matching). Given a graph G, a matching M is said to be maximum if for768

all other matchings M ′, |M | ≥ |M ′|.769

Equivalently, the size of the maximum matching M is the (co-)largest among all the matchings.770

A maximum matching that matches all the vertices of the graph is a perfect matching (Figure 8).771

Definition 9 (Perfect Matching). Given a graph G, a matching M is a perfect matching if each772

vertex v ∈ V is incident to exactly one edge e ∈M .773

In the general case, while every perfect matching is a maximum matching, every maximum774

matching may not be a perfect matching. However, in our case, every maximum matching found by775

the Blossom Algorithm is a perfect matching because we use cubic bridgeless graphs.776

Theorem 3 (Petersen’s Theorem [Pet91]). Every cubic bridgeless graph contains a perfect matching.777
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Figure 8: The bold edges of the Petersen Graph denote a perfect matching M .
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More generally, every cubic bridgeless graph contains exponentially many perfect matchings778

[EKK+11]. This is one of the reasons that we shall lexicographically sort the vertices as the first779

step of the algorithm. Sorting ensures that the Blossom Algorithm always returns the same matching780

for the same input. Next, there is a known relationship between the size of the maximum matching781

and the size of the minimum vertex cover:782

Lemma 1. In a given graph G, if M is a maximum matching and S is a minimum vertex cover,783

then |S| ≥ |M |.784

Lemma 1 means that the largest number of edges in a matching does not exceed the smallest785

number of vertices in a cover. We use this fact to set a lower bound on the size of the minimum vertex786

cover. More specifically, we terminate the algorithm early if the given integer k is less than |M |.787

Moreover, given that the matching M is a perfect matching in our case, we know that |M | = |V |
2 ,788

which in turn implies that |S| ≥ |V |
2 .789

In summary, in the Phase I of the algorithm, given a cubic bridgeless graph G and a list of790

lexicographically sorted vertices Vsort, we use the Blossom Algorithm to find and output a perfect791

matching M of the given graph. We refer the reader to [Edm65] for the Blossom Algorithm. In792

addition to the importance of Berge’s Theorem in the Blossom Algorithm (discussed later in sub-793

section 4.3), we note that the Blossom Algorithm does some extra work to handle the messy odd794

cycles, which, by transitivity, implies that our algorithm also handles the odd cycles.795

4.2 Populate Represents Table796

The second phase of the algorithm involves populating a novel data structure called the “Represents797

Table”. Before populating the table, the algorithm stores the vertices at each level of a tree derived798

using breadth-first search (BFS):799

Definition 10 (Breadth-First Search). Given a graph G, a Breadth-first Search (BFS) algorithm800

seeds on a root vertex v ∈ V and visits all vertices at the current depth level of one. Then, it visits801

all the nodes at the next depth level. This is repeated until all vertices are visited.802

While the BFS algorithm is canonically a search algorithm, we use it here to derive a tree. This803

tree itself is not needed. We require the information about the level on which each vertex is in the804

BFS tree. It is needed for the next steps in the phase two of the algorithm.805

Example 2. We are given the Petersen graph G (Figure 6) and a seed vertex 0 ∈ V . Hence, the806

BFS algorithm seeded on vertex 0 will return the following table regarding the level at which each807

vertex is in the BFS tree:808

Level Vertices
1 {0}
2 {1, 4, 5}
3 {2, 3, 6, 7, 8, 9}

Table 1: The vertices of the Petersen graph at each level of the BFS tree seeded on vertex 0.

Next, this phase of the algorithm implements an augmented version of the 2-approximation809

algorithm for the VC. The vanilla 2-approximation algorithm is equivalent to finding the maximal810

matching of a given graph.811

Definition 11 (Maximal Matching). Given a graph G, a matching M is said to be maximal if for812

all other matchings M ′, M ̸⊂M ′.813

In other words, a matching M is maximal if we cannot add any new edge e ∈ E to the ex-814

isting matching M . Next, recall that finding a maximal matching is equivalent to the vanilla815

2-approximation algorithm, which guarantees a vertex cover of size at most twice the size of the816

minimum vertex cover: the algorithm picks an arbitrary edge e = (u, v) ∈ E, adds both the vertices817

u and v to the vertex cover S, removes all edges connected to either of the two vertices (u and818

v), and repeats until no edge remains. The vertex S is the resultant vertex cover. In this vanilla819

version, the method in which the edges are picked is arbitrary from two perspectives: (i) the order820

in which edges get picked is arbitrary, and (ii) consequently, which edge among the remaining edges821

gets picked is arbitrary. These two perspectives may seem similar but are different as outlined in822

the two steps discussed in the next paragraph.823
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We remove the above-mentioned arbitrariness in the edges that are picked. Specifically, during824

this phase, the edges are picked by following a two-step method:825

• Step 1 - Order in which the edges get picked: We start with the seed vertex u on Level826

1 of the BFS tree. Once an edge connected to this seed vertex is picked, the seed vertex and827

the other endpoint of the picked edge are marked as matched. We then move to Level 2 of the828

BFS tree. An edge connected to an unmatched vertex on level 2 is picked next27. Once all829

vertices on Level 2 are matched, we move to Level 3, and so on. More generally, the order in830

which the edges get picked is by following the levels of the BFS tree.831

• Step 2 - Which edge gets picked from a given order: Each vertex u at level l is connected832

to (at most) three other vertices via (at most) three edges. Hence, among the (at most) three833

edges to choose from, an unpicked edge that is part of a given perfect matching M is picked.834

Recall that a perfect matching matches all the vertices of the graph, which means that each835

vertex is connected to exactly one edge in a given perfect matching M .836
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Figure 9: (a) Vertex 0 is on the Level 1 of the BFS tree. Hence, an edge in the perfect matching M
that is connected to the vertex 0 is picked. Therefore, the edge connecting vertices 0 and 1 is picked.
(b) All the edges connected to the two endpoints are removed. (c) Vertices 4 and 9 are the two
endpoints of the second edge picked. (d) All the edges connected to the two endpoints are removed.

Example 3. We are given the Petersen graph G, a perfect matching M (Figure 8), and the levels837

of a BFS tree seeded on vertex 0 (Table 1).838

During the first iteration of the augmented 2-approximation algorithm, we start with vertex 0,839

because as per step 1, it is the seed vertex at level 1 in the BFS tree. Consequently, as per step 2,840

27The tie regarding which vertex on the same level l gets picked first is broken using the lexicographical ordering of
the vertices such that a vertex at position i in the ordering is preferred over a vertex at position j, for all non-negative
integers i < j. Similarly, all ties henceforth are broken based on the lexicographical ordering of the vertices.
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we choose the edge connecting vertex 0 and vertex 1 because that edge is in the perfect matching M841

(Figure 9a). We mark the two endpoints of the picked edge as matched and remove all edges that842

connect the two endpoints (Figure 9b).843

In the next iteration, we choose vertex 4. This is because, as per step 1, it is the first vertex844

among all the unmatched lexicographically sorted vertices on level 2 of the BFS tree (namely, we845

choose vertex 4 from vertices 4 and 5). Next, as per step 2, we choose the edge connecting vertex 4846

and vertex 9 because that edge is in the perfect matching M (Figure 9c). We mark the two endpoints847

of the picked edge as matched and remove all edges that connect the two endpoints (Figure 9d).848

We repeat this exercise until all the edges in the perfect matching are picked and consequently,849

no edge remains in the graph.850

Note that the vanilla 2-approximation algorithm would have picked edges arbitrarily. Therefore,851

even when a given graph has a perfect matching, the vanilla 2-approximation algorithm may pick852

a set of edges that may not be a perfect matching. Hence, we augment the algorithm to ensure853

that all the edges in a perfect matching are picked. We will discuss the reason for doing so in the854

next section. However, our decision implies that the augmented 2-approximation algorithm always855

selects all edges in a perfect matching, which implies that the resultant vertex cover consists of all856

the vertices. Formally, this happens because of the combination of the following two known lemmas857

(or more formally, lemmata):858

Lemma 2. In a graph G, if a matching M is maximum, it implies that the matching M is also859

maximal. The converse does not hold.860

Note that due to Petersen’s Theorem (Theorem 3), a perfect matching and a maximum matching861

mean the same thing in the case of cubic bridgeless graphs.862

Lemma 3. The endpoints of a maximal matching form a vertex cover.863

Overall, given that the augmented 2-approximation algorithm picks edges that are in a perfect864

matching, we know that the edges form a maximal matching too. Hence, its endpoints, which865

consist of all the vertices in the graph, form a vertex cover (trivially). Additionally, the augmented866

2-approximation algorithm picks the edges in a particular order. This does not alter the above867

discussion but is crucial in how the represents table gets populated and affects its properties.868

Represents Table: We discuss the novel data structure called the “Represents Table”. It is an869

augmented version of a table data structure and consists of unique properties and operations. Let870

us first define the property that led to the name represents table. It is based on a concept where a871

vertex u that is connected to a vertex v via an edge is said to represent28 the other vertex.872

Definition 12 (Represents). Given a graph G, a vertex u ∈ V is said to represent a vertex v ∈ V873

when the vertex v is connected to the vertex u by an edge e ∈ E. Conversely, the vertex v is874

represented by the vertex u.875

Observe that when a vertex u represents a vertex v, it is an alternative way of saying that an876

edge connects the vertices u and v. Additionally, given that we use a cubic (bridgeless) graph, each877

vertex represents three vertices and each vertex is represented by three vertices. The list of vertices878

that a vertex u represents is stored in a list called a Represents List.879

Definition 13 (Represents List). Given a graph G, a vertex u ∈ V is said to represent a set of880

vertices V ′ ⊆ V \ {u} if there exists an edge between the vertex u and every vertex in V ′. These881

vertices that the vertex u represents are in the represents list Lu such that for all vertices u ∈ V ,882

Lu =
⋃
e∈E

e \ {u} | u ∈ e.883

In the context of this paper, we can restate the above definition as follows: Given a cubic graph884

G, a vertex u ∈ V that is connected to three vertices x, y, and z by an edge each is said to represent885

the vertices x, y, and z. These vertices that vertex u represents are in the represents list Lu such886

that Lu = {x, y, z}. The size of each represents list in this paper is at most three (because we use887

cubic graphs). We are now ready to define the represents table:888

28Informally, the term is inspired by a type of committee election where each voter approves of 2 candidates and
the aim is to elect the smallest committee that represents every voter such that at least one of every voter’s approved
candidate is in the committee. In our context, we want to select the smallest set of vertices that covers (represents)
each edge. Hence, think of vertices as candidates and edges as voters.
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Definition 14 (Represents Table). A represents table R is a 4-column table where a row stores889

the two endpoints of an edge picked during an iteration of the execution of the augmented 2-890

approximation algorithm, and for each endpoint u, also stores the corresponding represents list Lu,891

which consists of the vertices the endpoint u represents.892

Example 4. We are given the Petersen graph G (Figure 8), a perfect matching M and the levels893

of a BFS tree seeded on vertex 0 (Table 1). As discussed in Example 3, the first iteration of the894

augmented 2-approximation algorithm picks the edge connecting the vertices 0 and 1 and removes895

all the edges that are connected to the two endpoints of the picked edge (Figures 9a and 9b). Then,896

the corresponding entry in the represents table R is as follows:897

Endpoint Represents Endpoint Represents
1 List 1 2 List 2
0 L0 = {1, 4, 5} 1 L1 = {0, 2, 6}

Table 2: A row in the Represents Table R depicts (i) the two endpoints of an edge picked by the
augmented 2-approximation algorithm and (ii) the corresponding represents list of each of the
two endpoints. A represents list consists of the vertices connected to an endpoint during a given
iteration of the algorithm.

The first endpoint, namely vertex 0 represents vertices 1, 4, and 5. The second endpoint, namely898

vertex 1 represents vertices 0, 2, and 6.899

At this point, one may argue that the represents table is our fancy way of renaming an adjacency900

list. However, given the differences between their properties, we avoid using the latter term to avoid901

the confusion and to ensure that the represents table is visualized as a data structure that is different902

from an adjacency list. More specifically, unlike the adjacency list where each row enlists all the903

vertices connected to a vertex, the represents table stores the two endpoints of a picked edge in904

the same row. The corresponding represents list enlists only the vertices that are connected to an905

endpoint during a given iteration of the augmented 2-approximation algorithm. The stress on the906

words given iteration signifies that for a vertex to be listed in the represents list, an edge connecting907

the vertex and the endpoint should not have been removed during any of the previous iterations of908

the 2-approximation algorithm.909

Example 5. We continue the discussion from Example 4 where we had populated the first row of910

the represents table (Table 2).911

The second iteration of the augmented 2-approximation algorithm picks the edge connecting the912

vertices 4 and 9 (Figure 9c). Note that the represents list for vertex 4 enlists the vertices 9 and913

3. Vertex 0 is not listed because the edge connecting vertices 0 and 4 was removed during the first914

iteration. The represents list for the vertex 9 is L9 = {4, 6, 7}. Next, the algorithm now removes all915

the edges that are connected to the two endpoints of the picked edge (Figure 9d).916

Similarly, the represents table is populated until the augmented 2-approximation algorithm ter-917

minates. Finally, the represents table R is populated completely and it looks as follows:918

Endpoint Represents Endpoint Represents
1 List 1 2 List 2
0 L0 = {1, 4, 5} 1 L1 = {0, 2, 6}
4 L4 = {9, 3} 9 L9 = {4, 6, 7}
5 L5 = {7, 8} 7 L7 = {5, 2}
2 L2 = {3} 3 L3 = {2, 8}
6 L6 = {8} 8 L8 = {6}

Table 3: A Represents Table R populated as a result of the implementation of the augmented 2-
approximation algorithm for the vertex cover problem on a given instance of the Petersen graph, a
corresponding perfect matching M , and a BFS tree.

Operations and Properties of the Represents Table: We now discuss the operations that919

are supported by the represents table and discuss the properties relevant to this paper.920

Operations: The represents table supports four basic operations, namely, insert, access, freeze, and921

remove. The represents table does not support deletion of any information, as will become evident922

during the discussion of the diminishing hops phase of our algorithm.923
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• insert: The most basic operation supported by the table is the insertion of a vertex and its924

corresponding represents list. Additionally, the insertion operation does not need to access925

previous data. Hence, the asymptotic running time for each insert operation is O(1). We926

witnessed this operation while populating the represents table.927

• access / search: (i) To access an endpoint u in the represents table, we do a sequential search928

for the given endpoint. This takes O(m). (ii) To access the represents list of an endpoint u, we929

need to first access the endpoint u, which takes O(m). Subsequently, accessing the represents930

list Lu takes O(1). (iii) To access each of the represents list that consists of a vertex u, we931

need to traverse through each of the m represents lists, each of constant size (three). This932

takes O(m). Hence, the asymptotic running time for each access operation is O(m).933

• freeze: The freeze operation is used to freeze an endpoint. In the context of this paper, when934

we freeze an endpoint, it implies that the frozen vertex is selected as one of the vertices in the935

vertex cover. Next, whenever an endpoint u is frozen, it is simultaneously delisted from each936

of the represents lists it is a part of. This is analogous to marking every edge that touches the937

vertex u chosen for the vertex cover as being covered. Finally, the entire represents list Lu of938

the vertex u is delisted.939

Freezing an endpoint u takes O(m) time as we need to do a sequential search for the endpoint940

u. The delisting of the vertex u from each of the represents lists also takes O(m): for each941

of the m endpoints, we need to traverse through its represents list of size at most three and942

delist the vertex u from the represents list if present. The delisting of the represents list Lu943

takes O(1). Hence, the asymptotic running time for each freeze operation is O(m).944

• remove: The remove operation is used to remove an endpoint. In the context of this paper,945

when we remove an endpoint u, it implies that the removed endpoint is not selected as one946

of the vertices in the vertex cover. Hence, each of the three vertices that are connected to947

the removed endpoint needs to be in the vertex cover to cover the edges that are connected948

to the removed vertex. Hence, the corresponding steps carried out in the represents table are949

as follows: each vertex in the represents list of the removed endpoint u and each vertex that950

represents the endpoint u is frozen.951

The removal of an endpoint u takes O(m) time as we need to search for the endpoint u using952

a sequential search. The freeze operation will be carried out three times and each one takes953

O(m). Hence, the asymptotic running time for each remove operation is O(m).954

These are the main operations that can be carried out on the represents table. The space955

complexity of the table is O(m).956

Operation Time Complexity
insert O(1)
access O(m)
freeze O(m)

remove O(m)
delete operation not allowed

Table 4: The time complexity of each operation carried out on the Represents Table.

Properties: We discuss unique properties of the represents table, which are essential for our dis-957

cussion on the phase three (diminishing hops) of our algorithm.958

Property 1. Given a represents table R, an endpoint u in the ith row of the table R can only959

represent an endpoint v if the endpoint v is in row j of the table R, for all 1 ≤ i ≤ j ≤ m
2 .960

Conversely, an endpoint u in the jth row of the table R can be represented by an endpoint v only if961

the endpoint v is in the ith row of the table R, for all 1 ≤ i ≤ j ≤ m
2 .962

Property 1 discusses that an endpoint in an earlier row within the represents table can only963

represent endpoints in the same row or any later row. It cannot represent endpoints in rows that964

come before it. Conversely, an endpoint in a later row within the represents table can only be965

represented by endpoints in the same row or any earlier row. It cannot be represented by endpoints966

in rows that come after it. Overall, these describe a “directional” relationship within represents967

table. Endpoints in earlier rows can represent endpoints in the same or later rows, and conversely,968

endpoints in later rows can be represented by endpoints in the same or earlier rows.969
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Property 2. Given a represents table R, endpoints u and v in the ith row of the table R always970

represent each other, i.e., endpoint u ∈ Lv and endpoint v ∈ Lu if endpoints u and v are in the ith971

row for all 1 ≤ i ≤ m
2 .972

Property 2 discusses that endpoints in the same row of the represents table always represent973

each other. Property 2 adheres to Property 1 and Property 2 can be considered a specific case of974

Property 1. However, neither of the properties implies the other. Moreover, when we combine these975

two properties, they imply three possibilities about the representations related to an endpoint u in976

the table R when a graph is cubic : (i) u is represented by two other endpoints in rows above itself977

and does not represent any endpoint in rows below itself, (ii) u is represented by one endpoint in978

rows above itself and it represents one endpoint in rows below itself, and (iii) u is represented by979

zero endpoints in rows above itself and represents two endpoints in rows below itself.980

Property 3. Given a represents table R, an endpoint u ∈ R corresponds to a vertex u ∈ V of the981

corresponding graph G, and the set of endpoints in the represent table R forms a vertex cover S ⊆ V982

of the corresponding graph G.983

Property 3 refers to the simple one-to-one mapping of an endpoint in the represents table R984

and a vertex in the corresponding graph G. Additionally, in the general case, the endpoints in985

the represents table R form a vertex cover. This is because the endpoints of edges picked during986

maximal matching form a vertex cover. In our case of cubic bridgeless graphs, we always have a987

perfect matching and hence, all vertices of G will be an endpoint in the represents table R and these988

trivially form a vertex cover (because all vertices of a graph form a vertex cover).989

Property 4. Given a represents table R, if each endpoint u ∈ R is either frozen or removed, then990

the frozen endpoints form a vertex cover S ⊆ V of the corresponding graph G.991

Property 4 discusses the specific case when all the endpoints of the represents table R are either992

frozen or removed, and specifically the frozen endpoints form a vertex cover. The frozen endpoints993

form a vertex cover, so we focus our discussion on the removed endpoints. By design, when an994

endpoint is removed, all endpoints that it represents or is represented by are automatically frozen.995

This implies that no edge in the corresponding graph remains uncovered. Hence, the frozen endpoints996

will form a vertex cover when every endpoint is either frozen or removed. The frozen vertices do not997

form a vertex cover when at least one endpoint is neither frozen nor removed. This is because we998

can freeze, say, m−2 endpoints and not touch the remaining 2 endpoints. The frozen endpoints may999

not form a vertex cover because the remaining 2 endpoints may be connected via an edge. Hence,1000

the condition that each endpoint in the represents table R be either frozen or removed is necessary1001

for the frozen endpoints to form a vertex cover.1002

Overall, the operations performed on the represents table result in the above-discussed unique1003

properties of the represents table. These operations and properties form the foundation for the1004

discussion of the next phase of the algorithm.1005

In summary, in the Phase II of the algorithm, given a cubic bridgeless graph G, a list of lexico-1006

graphically sorted vertices Vsort, and a perfect matching M as input, we create a BFS tree, run an1007

augmented version of the 2-approximation algorithm for the VC, and populate a novel data structure1008

called the represents table R. The output of this phase is the represents table R. Additionally, we1009

discussed how the represents table was created and listed its operations and properties:1010

1. We began with an underlying data structure, a table.1011

2. We used the BFS tree and the augmented 2-approximation algorithm to collect specific infor-1012

mation needed to populate the represents table.1013

3. We discussed the corresponding insert operation that is used to enter the information into the1014

represents table. We also discussed the access, freeze, and remove operations.1015

4. We analyzed the time complexity of each operation29.1016

5. We observed some unique properties of the represents table.1017

29We may improve the time complexity of the operations by augmenting the existing data structure “represents
table” with a doubly linked list or a hash table. However, we leave such improvements to future work.
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Figure 10: A high-level illustration of augmenting paths being a motivation for diminishing hops.

4.3 Diminishing Hops1018

The diminishing hops phase of the algorithm constitutes the core contribution of the paper. To1019

understand the concept of diminishing hops and its relevance to the minimum vertex cover, we first1020

introduce the concept of “representation scores” and use it to decide whether to freeze or remove1021

an endpoint from the represents table. We then discuss augmenting paths and its relevance to the1022

maximum matching (Berge’s theorem [Ber57]), which serves as a motivation to finally introduce1023

diminishing hops for the minimum vertex cover (Figure 10).1024

Representation Score: The idea for using Representation Score is to associate a score with each1025

endpoint in the represents table R such that the score of each endpoint is used to decide whether to1026

freeze an endpoint or remove it. The score is a quantification of the information related to each edge1027

that connects the vertices of the graph. More specifically, the score of an endpoint is a weighted1028

number that captures how well an endpoint is represented by other endpoints in the table.1029

The assignment of the score begins from the top row of the represents table R. The score assigned1030

to an endpoint u is the sum of the scores of the endpoint that is on the same row as each endpoint1031

that represents u. For instance, consider that the endpoint u is in the ith row of the represents table1032

R, for some integer i > 1. Next, if some endpoint x in row j, for all j ∈ [1, i − 1], represents the1033

endpoint u, then the score of endpoint y that is in the same row j as endpoint x is added to the1034

score of endpoint u plus one. The score of each endpoint is initialized to zero.1035

Definition 15 (Representation Score). The representation score ζ of an endpoint u in row i of the1036

represents table R is denoted by1037

ζu =
∑

(ζy + 1)

where endpoint y is in the same row as endpoint x for all endpoints x such that u ∈ Lx and y ̸= u.1038

By design, the endpoint y will be in row j for some integer j such that 1 ≤ j < i.1039

The higher the score of endpoint y, the higher the chance of endpoint u being frozen so that1040

endpoint x can, in turn, be removed. Recall that both the endpoints in the first row have a score of1041

zero each and the computation moves downward.1042

Example 6. We use the populated represents table constructed in Example 5.1043

The representation score of both endpoints in the first row is 0. Hence, ζ0 = ζ1 = 0.1044

There are two endpoints in the second row, namely 4 and 9. The endpoint 9 is not represented by1045

any endpoint, which implies its score ζ9 = 0. The endpoint 4 is represented by endpoint 0. Hence,1046

its score will be equal to the score of endpoint 1 (plus 1) because endpoint 1 is in the same row as1047

endpoint 0. This means ζ4 = ζ1 + 1 = 0 + 1 = 1. Similarly, the representation score ζ will be1048

appended to the represents table R as follows:1049

Representation Endpoint Represents Endpoint Represents Representation

Score ζ 1 List 1 2 List 2 Score ζ
ζ0 = 0 0 L0 = {1, 4, 5} 1 L1 = {0, 2, 6} ζ1 = 0
ζ4 = 1 4 L4 = {9, 3} 9 L9 = {4, 6, 7} ζ9 = 0
ζ5 = 1 5 L5 = {7, 8} 7 L7 = {5, 2} ζ7 = 2
ζ2 = 3 2 L2 = {3} 3 L3 = {2, 8} ζ3 = 1
ζ6 = 3 6 L6 = {8} 8 L8 = {6} ζ8 = 7

Table 5: The Represents Table R is appended with representation score ζ for each endpoint.
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We jump to calculate the representation score of the last endpoint in the last row, namely,1050

endpoint 8. The endpoint 8 is represented by endpoints 3 and 5. Hence, its score will be equal1051

to the sum of scores of endpoints 2 and 7 (plus 1 for each endpoint). This is because endpoint1052

2 is in the same row as endpoint 3 and endpoint 7 is in the same row as endpoint 5. Hence,1053

ζ8 = (ζ2 + 1) + (ζ7 + 1) = (3 + 1) + (2 + 1) = 4 + 3 = 7.1054

Finally, while computing the representation score, we traverse through the entire represents table1055

by exploiting the fact that an endpoint u can be represented by at most two endpoints in rows above1056

itself. This is because the vertex degree of each vertex is three and one endpoint is in the same row1057

as endpoint u. Hence, the time complexity of computing the score is linear. We discuss the details1058

about the algorithm to compute scores and its complexity in Sections 5 and 7, respectively.1059

Freezing and Removing Endpoints using Representation Score: The representation scores1060

are used to determine which endpoints to freeze or remove. The process30 of freezing or removing an1061

endpoint begins from the bottom row of the represents table R. There are two endpoints in the last1062

row, u and v. We freeze the endpoint with a higher representation score ζ. Ties are broken using1063

lexicographic ordering of the vertices. Simultaneously, we remove the other endpoint. Formally:1064

f(u, v) =

{
freeze(v) and remove(u), if ζu < ζv

freeze(u) and remove(v), otherwise

Recall that when an endpoint u is frozen, it is delisted from each represents list it is in. Therefore,1065

for each endpoint a ∈ R, La = La \ u. Simultaneously, all entries in the represents list of u are1066

delisted. Hence, Lu = ∅. Next, when an endpoint v is removed, all entries in the represents list1067

of v is delisted (Lv = ∅) and each endpoint that represents the endpoint v is frozen. Finally, the1068

representation scores of each endpoint in the remaining rows is recalculated top-down. The process1069

now iteratively moves up row-wise of the represents table R. This process of freezing and removing1070

endpoints of each row continues until each endpoint in the represents table R is either frozen or1071

removed. However, during an iteration, when an endpoint in a given row is already frozen, the other1072

endpoint is automatically removed. On the other hand, when an endpoint in a given row is already1073

removed, the other endpoint, by design, would have been frozen. Finally, when both endpoints are1074

frozen, no action is performed. In either case, the algorithm moves to the next iteration without the1075

need to use the representation score. The case when both the endpoints are removed is impossible.1076

Example 7. We use the represents table with representation scores constructed in Example 6.1077

The process of freezing or removing an endpoint begins from the bottom row. Here, there are two1078

endpoints, namely 6 and 8, having representation scores of ζ6 = 3 and ζ8 = 7.1079

First, freeze endpoint 8 because it has a higher representation score (ζ8 > ζ6 (7 > 3)).Then, delist1080

the endpoint 8 from the represents lists L3 and L5. Also delist the entire represents list L8.1081

Next, remove endpoint 6. Then, freeze the endpoints 1 and 9 because the removed endpoint 6 is in1082

the represents lists L1 and L9. Delist the entire represents list L6. Additionally, because endpoints 11083

and 9 are frozen: (i) delist the endpoint 1 from the represents list L0 and delist the endpoint 9 from1084

the represents list L4, and (ii) also delist the entire represents lists L1 and L9.1085

Finally, recalculate the represents score of all the endpoints that are neither frozen nor removed.1086

The representation table at the end of the first iteration, carried on the bottom row, looks as follows:1087

Representation Endpoint Represents Endpoint Represents Representation

Score ζ 1 List 1 2 List 2 Score ζ
ζ0 = 0 0 L0 = {1,4, 5} 1 L1 = {0, 2, 6} ζ1 = 0
ζ4 = 1 4 L4 = {9,3} 9 L9 = {4, 6, 7} ζ9 = 0
ζ5 = 1 5 L5 = {7, 8} 7 L7 = {5, 2} ζ7 = 0
ζ2 = 2 2 L2 = {3} 3 L3 = {2, 8} ζ3 = 1
ζ6 = 3 6 L6 = {8} 8 L8 = {6} ζ8 = 7

Table 6: The Represents Table R after the first iteration of freezing and removing endpoints based
on the representation score. The bold red font denotes that an endpoint is frozen. The grayed-out
entries denote removed / delisted endpoints.

At the end of all iterations, the endpoints 0, 3, 6, and 7 are removed from the represents table1088

R. The endpoints 1, 2, 4, 5, 8, and 9 are frozen in the represents table R.1089

30A process here denotes a sequence of steps that are followed and should not be misinterpreted from the context
of a process in operating systems.
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At the end of the process of freezing or removing endpoints using the represents table R, the1090

frozen endpoints correspond to the vertices in a vertex cover S′ of the graph G. We stress that at1091

this moment, we do not make any claim about the size of the vertex cover.1092

Theorem 4. Given a graph G consisting of a set V of m vertices and the corresponding represents1093

table R populated by a set W of m endpoints, a set S′′ of l endpoints in the represents table R is1094

frozen, for some integer 1 ≤ l ≤ m, and a disjoint set W \ S′′ of m− l endpoints in the represents1095

table R is removed if and only if there is a vertex cover S′ of l vertices in the graph G that correspond1096

to the set S′′ of frozen endpoints.1097

Proof. (⇒) If a set S′′ of l endpoints in the represents table R is frozen, for some integer 1 ≤ l ≤ m,1098

and a disjoint set W \ S′′ of m − l endpoints in the represents table R is removed, then there is a1099

vertex cover S′ of l vertices in the graph G that correspond to the set S′′ of frozen endpoints.1100

When the represents table is populated, all the vertices in G are listed as endpoints. Hence, the1101

endpoints trivially form a vertex cover (Property 3). Next, the computation of representation scores1102

and the consequent process of freezing and removal of the endpoints results in each endpoint either1103

being frozen or removed. Hence, the frozen endpoints form a vertex cover (Property 4).1104

(⇐) If there is a vertex cover S′ of l vertices in the graph G, for some integer 1 ≤ l ≤ m, then1105

a set S′′ of l endpoints in the represents table R is frozen that correspond to the vertex cover S′
1106

and a disjoint set W \ S′′ of m − l endpoints in the represents table R is removed. This is the1107

straightforward case, as we can simply freeze the endpoints that correspond to the vertices in the1108

vertex cover S′ and remove the rest of the endpoints.1109

Again, we stress that the above-stated theorem guarantees that the frozen endpoints form a1110

vertex cover and does not give any guarantee regarding the size of the vertex cover. We leave the1111

analysis on the size of the vertex cover derived using representation scores for future work. Overall,1112

here, we discussed the use of representation scores to freeze or remove each endpoint in the given1113

represents table, and the resultant frozen endpoints form a vertex cover. We finally discuss how the1114

represents table, representation score, and the vertex cover are used in the diminishing hops.1115

Diminishing Hops: The concept of diminishing hops is inspired by the use of augmenting paths1116

for maximum matching (Figure 10). More specifically, we prove a theorem on the use of diminishing1117

hops for minimum vertex cover, just like Berge’s theorem is proven on the use of augmenting paths1118

for maximum matching [Ber57]. To do so, we first discuss an augmenting path and its relation to1119

a maximum matching proven through Berge’s theorem. Then, we introduce a diminishing hop and1120

show its relation to the minimum vertex cover through a theorem (analogous to Berge’s theorem).1121

Berge’s Theorem, Augmenting Paths, and Maximum Matching: The Blossom Algorithm [Edm65]1122

is a polynomial-time algorithm to find a maximum matching in a given graph. The key concept that1123

the Blossom algorithm relies upon is Berge’s theorem:1124

Theorem 5 (Berge’s Theorem [Ber57]). Given a graph G and a matching M , M is a maximum1125

matching if and only if there is no M -augmenting path in the graph G.1126

To understand this, we first define an alternating path and an augmenting path.1127

Definition 16 (Alternating Path). Given a graph G and a matching M , an alternating path P1128

w.r.t. the matching M is a path that (i) starts from a vertex v that is not incident to any edge e in1129

the matching M and (ii) whose edges alternate between not being in M and being in M (or being1130

in M and not being in M if the path starts from a vertex v that is incident to any edge e in the1131

matching M).1132

Definition 17 (Augmenting Path). Given a graph G and a matching M , an augmenting path is1133

an alternating path w.r.t. matching M that starts from a vertex v and ends at a vertex u such that1134

u ̸= v and neither the vertex u or the vertex v is incident to any edge e in the matching M .1135

An augmenting path’s characteristic is that it increases the size of an existing matching. Hence,1136

if there is an augmenting path P w.r.t. a matching M , then we can increase the size of the matching1137

by one. To do so, we create a new matching M ′ by flipping the edges along the path P such that (i)1138

if an edge is in M , then it is not in M ′ and (ii) if an edge is not in M , then it is in M ′ (Figure 11).1139

Formally, the new matching M ′ can be denoted by M ′ = (M \P )∪(P \M) and hence, |M ′| = |M |+1.1140

Berge’s theorem uses this characteristic to prove that a matching M is maximum if and only if there1141

is no augmenting path w.r.t. M (Theorem 5).1142
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Figure 11: (a) An augmenting path from vertex u to y alternates between an edge not in a matching
and an edge in the matching (thick edge). (b) It leads to an edge being augmented to the matching.

We practically described an algorithm to find a maximum matching: start with an initial match-1143

ing (even a blank matching), augment the current matching with augmenting paths, and terminate1144

when no augmenting path remains. The eventual augmented matching is a maximum matching.1145

Subsequently, the key contribution of the Blossom algorithm is to find augmenting paths efficiently.1146

Similarly, this section first introduces the concept of a diminishing hop and then shows its relation1147

to a minimum vertex cover. Finally, we discuss how to compute a diminishing hop efficiently in1148

Section 5 (Algorithm) and analyze its time complexity in Section 7.1149

Diminishing Hop: A represents table R consists of vertices V in graph G that are endpoints of1150

edges in a maximum matching M found using the Blossom algorithm. In our case (of using cubic1151

bridgeless graphs), all vertices of a given graph G will be endpoints in the represents table because1152

a perfect matching always exists. Next, if each endpoint in the represents table is either frozen or1153

removed, then the frozen endpoints form a vertex cover (Property 4). Conversely, if a vertex cover1154

S of a graph is given, then the corresponding endpoints in the represents table can be frozen and1155

the rest removed (i.e., endpoints in S can be frozen and endpoints in V \S removed). Finally, in our1156

case, the represents table consists of m
2 rows, which is also the lower bound on the size of the MVC.1157

Given that m
2 corresponds to the lower bound of an MVC and to the number of rows in the1158

represents table, we ideally want exactly one endpoint from each row frozen and the other removed.1159

Removing both endpoints of a given row is not possible by design. Hence, if there is a row in the1160

represents table that consists of two frozen endpoints, then it should be assessed if removing one of1161

them can lead to a smaller number of frozen endpoints in the table. This corresponds to a smaller-1162

sized vertex cover. Importantly, recall that m
2 is a lower bound and not the size of the MVC. Hence, it1163

is perfectly possible for more than one row of the represents table to have both its endpoints frozen.1164

The aim here is to assess whether decreasing the number of such rows is possible or not.1165

Consider a represents table R such that each endpoint is either frozen or removed and exactly1166

one of its rows has both its endpoints frozen. The set of frozen endpoints corresponds to a vertex1167

cover S. We shall generalize this discussion to when at least one of the rows has both its endpoints1168

frozen later on by successively doing diminishing hops31. Hence, for now, given a represents table R1169

where (i) each endpoint is either frozen or removed, (ii) each endpoint is marked “unvisited”, and1170

(iii) one of the rows has both its endpoints frozen, we carry out the following sequence of operations:1171

1. Endpoints u and v in row i are both frozen, for some integer i ∈ [1, m2 ]. Both are marked1172

“unvisited”. Hence, we start the hopping phase by choosing an endpoint to remove, say u.1173

2. Remove endpoint u. Consequently, by design, each endpoint x is frozen such that either (i) x1174

is represented by endpoint u or (ii) x represents endpoint u. Mark endpoints u and v of row i1175

and each endpoint x as “visited”. Enqueue endpoint u in a queue Q. Subsequently,1176

(a) For all integers j ∈ [i+ 1, m2 ], consider an endpoint x in row j such that x is represented1177

by endpoint u. If the jth row has two frozen endpoints x and y, repeat Step 2 by choosing1178

to remove endpoint y if endpoint y is marked “unvisited”. Move to Step 2(b) when either1179

an endpoint marked “visited” is encountered or endpoint u represents no endpoint or only1180

one endpoint in row j is frozen and “visited”.1181

(b) Dequeue an endpoint u from queue Q. For all integers j ∈ [1, i−1], consider an endpoint x1182

in row j such that x represents endpoint u. If the jth row has two frozen endpoints x and1183

y, repeat Step 2 by choosing to remove endpoint y if endpoint y is marked “unvisited”. If1184

no endpoint represents endpoint u or when an endpoint marked as “visited” is encountered1185

or only one endpoint of row j is frozen and “visited”, then either (i) repeat Step 2(b) if1186

the queue Q is non-empty or (ii) move to Step 3 if the queue Q is empty.1187

31Indeed, the proof for diminishing hops should eventually seem similar to the proof connecting augmenting paths
and maximum matching (Berge’s Theorem: Theorem 1, [Ber57]). Hence, an understanding of the proof of Berge’s
Theorem will make our proof easier to follow.
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3. Count the number of marked frozen vertices Su resulting from removing endpoint u. Mark1188

all the endpoints as “unvisited” and restore the represents table to the starting state (as was1189

given before Step 1). Repeat Step 2 by removing endpoint v. Subsequently, count the number1190

of marked frozen vertices Sv resulting from removing endpoint v.1191

4. The vertex cover S is the initial set of frozen endpoints in the given represents table R. Hence,1192

if |S| ≤ |Su| and |S| ≤ |Sv|, then do nothing. Else if |Su| ≤ |Sv|, then the diminished vertex1193

cover is Su; else the diminished vertex cover is Sv.1194

We almost informally stated the algorithm for diminishing hops for the restricted case when we1195

are given a represents table where each endpoint is either frozen or removed, and when exactly one1196

row has both its endpoints frozen. However, we leave formalization to Section 5. Here, we discuss1197

how a diminished vertex cover implies a minimum vertex cover, and importantly, when a given set1198

of frozen endpoints is not diminishable, the given vertex cover is indeed the minimum vertex cover.1199

We first give an example:1200

Example 8. We use the represents table that results after freezing or removing each endpoint dis-1201

cussed in Example 7. Recall that the endpoints 0, 3, 6, and 7 are removed from the represents table1202

R and the endpoints 1, 2, 4, 5, 8, and 9 are frozen. The latter corresponds to a vertex cover.1203

Representation Endpoint Represents Endpoint Represents Representation

Score ζ 1 List 1 2 List 2 Score ζ
ζ0 = 0 0 L0 = {1,4, 5} 1 L1 = {0, 2, 6} ζ1 = 0
ζ4 = 1 4 L4 = {9,3} 9 L9 = {4, 6, 7} ζ9 = 0
ζ5 = 1 5 L5 = {7, 8} 7 L7 = {5, 2} ζ7 = 0
ζ2 = 2 2 L2 = {3} 3 L3 = {2, 8} ζ3 = 1
ζ6 = 3 6 L6 = {8} 8 L8 = {6} ζ8 = 7

Table 7: The Represents Table R where each endpoint is either frozen (red font) or removed (gray
font), and one row has both its endpoints frozen (yellow highlight).

Endpoints 4 and 9 in row 2 are frozen. Remove endpoint 4 (as per Step 2). Hence, row 2 now has1204

only one frozen endpoint. Mark both the endpoints as “visited” (green highlight). Enqueue endpoint1205

4 to the queue Q = {4}. By design, endpoints 0 and 3 are frozen. This is because endpoint 3 is1206

represented by endpoint 4 (see list L4) and endpoint 0 represents endpoint 4 (see list L0).1207

Representation Endpoint Represents Endpoint Represents Representation

Score ζ 1 List 1 2 List 2 Score ζ
ζ0 = 0 0 L0 = {1,4, 5} 1 L1 = {0, 2, 6} ζ1 = 0
ζ4 = 1 4 L4 = {9,3} 9 L9 = {4, 6, 7} ζ9 = 0
ζ5 = 1 5 L5 = {7, 8} 7 L7 = {5, 2} ζ7 = 0
ζ2 = 2 2 L2 = {3} 3 L3 = {2, 8} ζ3 = 1
ζ6 = 3 6 L6 = {8} 8 L8 = {6} ζ8 = 7

Table 8: Mark endpoints 4 and 9 as “visited” (green highlight). Remove endpoint 4. Consequently,
endpoints 0 and 3 are frozen and marked “visited”. We will first hop (red arrow) from row 2 to row
4, which corresponds to hopping from the removed endpoint 4 to endpoint 3 and then hop from row
2 to row 1, which corresponds to hopping from the removed endpoint 4 to endpoint 0.

First, hop to row 4 that contains endpoint 3 (as per Step 2(a)). Now, row 4 consists of two frozen1208

endpoints, namely, 2 and 3. Next, hop to endpoint 2 to remove it (i.e., repeat Step 2).1209

Representation Endpoint Represents Endpoint Represents Representation

Score ζ 1 List 1 2 List 2 Score ζ
ζ0 = 0 0 L0 = {1,4, 5} 1 L1 = {0, 2, 6} ζ1 = 0
ζ4 = 1 4 L4 = {9,3} 9 L9 = {4, 6, 7} ζ9 = 0
ζ5 = 1 5 L5 = {7, 8} 7 L7 = {5, 2} ζ7 = 0
ζ2 = 2 2 L2 = {3} 3 L3 = {2, 8} ζ3 = 1
ζ6 = 3 6 L6 = {8} 8 L8 = {6} ζ8 = 7

Table 9: Hop (red arrow) from frozen endpoint 3 to endpoint 2. The latter is subsequently removed.
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We removed endpoint 2 (as per Step 2). Mark endpoint 2 as “visited”. Enqueue endpoint 2 to1210

the queue Q = {4, 2}. Next, freeze and mark endpoints 7 and 1 as “visited”. Next, we hop to rows1211

where endpoint 2 is represented by an endpoint, namely, endpoint 1 in row 1 and endpoint 7 in row1212

3.1213

Representation Endpoint Represents Endpoint Represents Representation

Score ζ 1 List 1 2 List 2 Score ζ
ζ0 = 0 0 L0 = {1,4, 5} 1 L1 = {0, 2, 6} ζ1 = 0
ζ4 = 1 4 L4 = {9,3} 9 L9 = {4, 6, 7} ζ9 = 0
ζ5 = 1 5 L5 = {7, 8} 7 L7 = {5, 2} ζ7 = 0
ζ2 = 2 2 L2 = {3} 3 L3 = {2, 8} ζ3 = 1
ζ6 = 3 6 L6 = {8} 8 L8 = {6} ζ8 = 7

Table 10: Hop (red arrow) from row 4 to row 3 and row 1, which corresponds to hopping from
removed endpoint 2 to endpoint 7 and endpoint 1, respectively.

At this point, no “unvisited” endpoint is represented by endpoint 2. Hence, as per Step 2(a),1214

we move to Step 2(b). De-queuing queue Q = {4, 2} gives us endpoint 4 and therefore Q = {2}.1215

Endpoint 4 is represented by one endpoint, namely 0 in row 1. We hop to row 1. Both the endpoints1216

of row 1 are marked “visited” (and are frozen). Hence, we repeat Step 2(b) as queue Q is not empty.1217

De-queuing queue Q = {2} gives us endpoint 2 and therefore Q = {}. Endpoint 2 is represented1218

by endpoints 1 and 7. Recall that we simply marked the endpoint 1 as “visited” because it is already1219

frozen. Both the endpoints of row 1 are already marked “visited” (and are frozen). Next, we hop to1220

row 3. Row 3 consists of two frozen endpoints and one of them is marked “unvisited”. Hence, hop1221

to endpoint 5 and remove it (i.e., repeat Step 2).1222

Representation Endpoint Represents Endpoint Represents Representation

Score ζ 1 List 1 2 List 2 Score ζ
ζ0 = 0 0 L0 = {1,4, 5} 1 L1 = {0, 2, 6} ζ1 = 0
ζ4 = 1 4 L4 = {9,3} 9 L9 = {4, 6, 7} ζ9 = 0
ζ5 = 1 5 L5 = {7, 8} 7 L7 = {5, 2} ζ7 = 0
ζ2 = 2 2 L2 = {3} 3 L3 = {2, 8} ζ3 = 1
ζ6 = 3 6 L6 = {8} 8 L8 = {6} ζ8 = 7

Table 11: Hop (red arrow) from frozen endpoint 7 to endpoint 5. The latter is subsequently removed.

We removed endpoint 5 (as per Step 2). Mark it “visited”. Enqueue endpoint 5 to the queue1223

Q = {5}. Consequently, freeze and mark endpoints 0 and 8 as “visited”. Next, we first hop to the1224

row where endpoint 5 represents an endpoint, namely, endpoint 8 in row 5. We then hop to row1225

where endpoint 5 is represented by an endpoint, namely, endpoint 0 in row 1.1226

Representation Endpoint Represents Endpoint Represents Representation

Score ζ 1 List 1 2 List 2 Score ζ
ζ0 = 0 0 L0 = {1,4, 5} 1 L1 = {0, 2, 6} ζ1 = 0
ζ4 = 1 4 L4 = {9,3} 9 L9 = {4, 6, 7} ζ9 = 0
ζ5 = 1 5 L5 = {7, 8} 7 L7 = {5, 2} ζ7 = 0
ζ2 = 2 2 L2 = {3} 3 L3 = {2, 8} ζ3 = 1
ζ6 = 3 6 L6 = {8} 8 L8 = {6} ζ8 = 7

Table 12: Hop (red arrow) from row 4 to row 5 and row 1, which corresponds to hopping from
removed endpoint 5 to endpoint 8 and endpoint 0, respectively.

First, hop to row 5 that contains endpoint 8 (as per Step 2(a)). Row 5 consists of one frozen1227

endpoint, which is marked “visited”. Note that endpoint 6 was already removed and hence, we need1228

not visit it as only one endpoint from its row is frozen. Additionally, by design, each endpoint1229

represented by and representing endpoint 6 is frozen. Hence, we move to execute Step 2(b).1230

De-queuing queue Q = {5} gives us endpoint 0 and therefore Q = {}. Endpoint 5 is represented1231

by one endpoint, namely 0 in row 1. We hop to row 1. Both the endpoints of row 1 are marked1232

“visited” (and are frozen). Hence, we move to Step 3 as queue Q is empty.1233
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The number of frozen endpoints is six. Hence, the corresponding vertex cover S4 = {0, 1, 3, 7, 8, 9}1234

is of size six and is not smaller than S, the original vertex cover given to us. We repeat the entire1235

exercise by removing the endpoint 9 in Table 7. We get the corresponding vertex cover S6 of size six1236

as well. Hence, as per Step 4, the vertex cover S is not diminishable, and consequently, it is indeed1237

the minimum vertex cover, which we prove in the succeeding discussion.1238

We are now ready to define a diminishing hop and prove the corresponding theorem that relates1239

the above-discussed restricted diminishing hops to the minimum vertex cover.1240

Definition 18 (Duadic Hop). Given a represents table R where each endpoint u in table R is either1241

frozen or removed, a duadic32 hop H w.r.t. to the frozen endpoints in table R (equivalently w.r.t. to1242

a given vertex cover S) is a sequence of operations that (i) starts at a row where both (duad of) the1243

endpoints are frozen, (ii) removes one of the endpoints, (iii) freezes each endpoint that represents or1244

is represented by the removed endpoint, and (iv) repeats each operation until no “unvisited” endpoint1245

remains or “unvisited” but removed endpoints remain or an already frozen endpoint is encountered.1246

A duadic hop is analogous to an alternating path (Definition 16), but unlike an alternating1247

path, where the path alternates between edges in matching and not in matching, a duadic hop is1248

a sequence of operations that alternately freezes and removes endpoints in the table R. Hence,1249

while an alternating path exists in a graph, a duadic hop does not exist in a table R but is created.1250

The nomenclature of a duadic hop is based on the fact that the hop starts with a duad (or pair)1251

of frozen endpoints, removes one of them, and hops to another row, (possibly) creating a duad of1252

frozen endpoints at the row it hopped to33. We now define a diminishing hop:1253

Definition 19 (Diminishing Hop). Given a represents table R where each endpoint u in table R is1254

either frozen or removed, a diminishing hop H w.r.t. to the frozen endpoints in table R (equivalently1255

w.r.t. to a given vertex cover S) is a duadic hop w.r.t. to a vertex cover S that removes at least one1256

more endpoint than it freezes while satisfying all the properties of the table R.1257

A diminishing hop is analogous to an augmenting path (Definition 17). The former diminishes1258

the size of a given vertex cover, and the latter augments the size of a given matching. Let us elaborate1259

on the similarity between the two concepts. To find a maximum matching, Berge [Ber57, Edm65]1260

suggested searching for augmenting paths. Specifically, he suggested starting from an exposed vertex1261

(i.e., a vertex which is connected to edges not in a matching). Then, walk along an alternating path1262

by iteratively finding the path until it exists. Consequently, if this alternating path stops at an1263

exposed vertex, then it is an augmenting path, and the size of the matching can be increased by1264

one. On the other hand, if the path is not augmenting, then backtrack (a little), choose another1265

edge, and continue to form an alternating path until no augmenting path exists.1266

Augmenting Path Diminishing Hop

Where to start?
start at an exposed vertex in the
graph, which means none of its
edges is in the given matching

start at a row in the represents table
where a duad of (i.e., both) endpoints
are frozen (i.e., both endpoints of an
edge are in the given vertex cover)

How to proceed? follow an alternating path perform a duadic hop

When to termi-
nate?

when another exposed vertex is
encountered in an alternating
path, or no such vertex exists

when the number of endpoints re-
moved > the number of endpoints
frozen during a duadic hop, while sat-
isfying the table’s properties, or no
such duadic hop exists

What is the use?
searching for augmenting paths
is a technique to find a maximum
matching (Theorem 5)

searching for diminishing hops is a
technique to find a minimum vertex
cover (Theorem 7)

Table 13: An overview of the similarities between an augmenting path and a diminishing hop.

32The term “dyadic” (or dyad) is more commonly and interchangeably used in English as compared to “duadic”
(or duad), but not in a mathematical context. For instance, dyadic has a specific meaning in linear algebra. Hence,
we use “duadic” instead of “dyadic” to prevent confusion and emphasize that the two terms are unrelated.

33The word “possibly” is in the parenthesis because when using cubic bridgeless graphs and representation score ζ
to freeze / remove endpoints as done in the paper, it is guaranteed to create a duad of frozen endpoints in at least
one of the rows we hop to. However, if we do not use the representation score ζ to freeze / remove endpoints, then it
is possible that such a duad may not be formed during a duadic hop. We leave this analysis to future work.
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Similarly, to find a minimum vertex cover, we propose searching for diminishing hops. Specifically,1267

we are given a vertex cover S. The vertices in the vertex cover correspond to the frozen endpoints in1268

the represents table (and vertices in V \S correspond to removed endpoints). If exactly one endpoint1269

of each row is frozen, it is the minimum vertex cover, and we need not do anything. However, if1270

we have two frozen endpoints in a row, then we start from a row where both of its endpoints are1271

frozen. Then, move along a duadic hop by iteratively removing and freezing endpoints until possible.1272

Consequently, when duadic hops stop, if the number of endpoints removed is greater than the number1273

of endpoints frozen, then the duadic hop is a diminishing hop, and the size of the vertex cover is1274

decreased (by one). On the other hand, if the duadic hop is not diminishing, then backtrack (a1275

little), choose another endpoint to remove (or row with two frozen endpoints), and continue duadic1276

hops until no diminishing hop exists. At this point, we stress that we do not discuss time complexity1277

and focus on formalizing the relation between diminishing hops and minimum vertex cover.1278

Note that the definitions of a duadic hop and a diminishing hop are general in that they hold for1279

diminishing hops for restricted and for the general case34. We now prove a theorem that associates1280

diminishing hop and minimum vertex cover for the restricted case of represents table R where1281

exactly one row contains two frozen endpoints. Subsequently, we prove a theorem that associates1282

diminishing hop and minimum vertex cover for the general case of represents table R where at least1283

one row contains two frozen endpoints. Recall that when one endpoint of each row is frozen, the1284

frozen endpoints form a minimum vertex cover, and hence, we do not need to prove anything.1285

Theorem 6 (Restricted Diminishing Hop and Vertex Cover). Given a cubic bridgeless graph G,1286

a corresponding represents table R and a vertex cover S of size |V |
2 + 1 (derived using R), S is1287

the minimum-size vertex cover derivable from the represents table R if and only if there is no S-1288

diminishing hop in the represents table R.1289

Proof Outline: In this restricted case, the size of the minimum vertex cover can either be |V |
2 + 11290

or |V |
2 . By definition, we start with a vertex cover of size |V |

2 + 1. Hence, if a diminishing hop w.r.t.1291

the given vertex cover does not exist, then it implies that the given vertex cover is the minimum1292

vertex cover. Additionally, if there is a diminishing hop, then the resultant vertex cover is of size1293

|V |
2 , which is the minimum-size vertex cover possible in a graph having a perfect matching. On the1294

other hand, if the given vertex cover is not a minimum vertex cover, then there exists a diminishing1295

hop that leads to a minimum vertex cover that consists of any one of the two frozen endpoints in it.1296

Proof. We prove the contrapositive of the theorem. We start with the reverse direction, which is1297

relatively simpler than the forward direction.1298

(⇐) If there exists an S-diminishing hop, then S is not a minimum vertex cover.1299

Let S be a vertex cover of size |V |
2 + 1. Then the corresponding represents table R consists1300

of |V |
2 + 1 frozen endpoints (and |V |

2 − 1 removed endpoints). Given that we use cubic bridgeless1301

graphs, there is always a perfect matching, which means that there are |V |
2 rows in the represents1302

table. This, by pigeonhole principle and by design requiring each row to have at least one frozen1303

endpoint, implies that exactly one row in the represents table consists of a duad (i.e., a row with1304

both its endpoints as frozen). Let u and v be the endpoints that form a duad.1305

Given that there exists an S-diminishing hop, we know that, by definition, the hop begins at the1306

row with the duad u and v. In turn, the diminishing hop decreases the number of frozen endpoints1307

in the table by one. The resultant frozen endpoints, one in each row, correspond to a vertex cover1308

S′. Hence, we know that either one of u or v will be in the vertex cover S′. Formally, given that1309

S ∩ {u} ̸= ∅ and S ∩ {v} ̸= ∅, it means that either S′ ∩ {u} = ∅ or S′ ∩ {v} = ∅. For the remaining1310

|V |
2 − 1 rows where one of its two endpoints (y and z) is frozen, we know that either S ∩ {y} = ∅1311

or S ∩ {z} = ∅; this condition holds for S′ too. Here, if y ∈ S, then it does not imply y ∈ S′ (or1312

analogously, if z ∈ S, then it does not imply z ∈ S′). We only know for a fact that either one of the1313

two endpoints in a row will be in the vertex covers S, S′. We do not need to show which specific1314

endpoint will be in the vertex covers. Overall, we are sure that |S′| = |S|−1. Therefore, because we1315

were able to find a vertex cover S′ of a size smaller than the size of the vertex cover S (|S′| < |S|;1316

here, specifically |S′| = |S| − 1), S cannot be a minimum vertex cover. In fact, for this restricted1317

setting, we provide a stronger argument: vertex cover S′ of size |V |
2 is indeed the minimum vertex1318

cover (Lemma 1). Hence, S cannot be a minimum vertex cover. We now prove the other direction.1319

34Given a cubic bridgeless graph, a restricted case is the case where exactly one row in the corresponding represents
table consists of two frozen endpoints and a general case is the case where at least one row in the corresponding
represents table consists of two frozen endpoints.
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(⇒) If S is not a minimum vertex cover, then there exists an S-diminishing hop.1320

Let S be a vertex cover that is not a minimum vertex cover. Since S is not a minimum vertex1321

cover, there must exist at least one vertex cover S′ that is smaller than S, i.e., |S′| < |S|. In this1322

restricted case, we know that the vertex cover S is of size |V |
2 + 1, and the vertex cover S′ is of size1323

|V |
2 . We now find the association between S and S′.1324

Take Symmetric Difference of vertices in S and S′: Let G′ be a subgraph of G such that1325

the vertices in G′ is a symmetric difference between the vertex covers S and S′. Formally,1326

G′ = S∆S′ = (S \ S′) ∪ (S′ \ S)

This means that the vertices in the subgraph G′ are the vertices that are in the vertex cover S but1327

not in the vertex cover S′, or in S′ but not in S. Vertices that are in both S and S′ or that are1328

neither in S nor in S′ are omitted. The edges in subgraph G′ correspond to the edges in the graph1329

G that connect the vertices in G that correspond to the vertices in G′.1330

Properties of the subgraph G′:1331

1. The edges not in G′ but in G are covered by the vertices that are in both the vertex covers S1332

and S′. Hence, the edges in G′ are the edges that remain uncovered when the vertices only in1333

S′ or only in S are removed.1334

2. Each edge in the subgraph G′ is covered by vertices that correspond to the vertices only in1335

the vertex cover S. Simultaneously, each edge in the subgraph G′ is covered by vertices that1336

correspond to the vertices only in the vertex cover S′.1337

3. The number of vertices in the subgraph G′ is odd. Specifically, suppose there are m′ vertices1338

in the subgraph G′ that correspond to the vertices in the vertex cover S. In that case, there1339

are m′ − 1 vertices in the subgraph G′ that correspond to the vertices in the vertex cover S′.1340

4. The subgraph G′ can be a single vertex (singleton), a linear chain, a cycle, or a tree (or multiple1341

connected components of one or more of the four).1342

Relating S and S′ to subgraph G′: The vertices in G′ alternate between a vertex in S and a1343

vertex in S′. This is because for every edge e = (u, v) in subgraph G′, if the edge is covered by1344

vertex u in S, then it is covered by vertex v in S′, or vice versa. Vertices u and v cannot be in the1345

same vertex cover together. Otherwise, both the vertices would not be in the symmetric difference1346

of S and S′, and consequently, e = (u, v) would not be an edge in the subgraph G′. Additionally, it1347

is not possible that a vertex cover S (or S′) does not contain either of the vertices u and v because1348

if that is the case then S (or S′) will not be a vertex cover as edge e = (u, v) will not be covered.1349

Identifying a Diminishing Hop from the subgraph G′: This is a critical part. Until now,1350

the proof in the forward direction has only discussed graphs and not mentioned the represents table,1351

which is needed for diminishing hops. Hence, we first associate the vertex covers S and S′ for the1352

given graph G with the represents tables R and R′, respectively, that correspond to the given graph1353

G. More specifically, given a graph G and a vertex cover S, there is a represents table R such1354

that endpoints that correspond to vertices in the vertex cover S are frozen and the remainder are1355

removed. Similarly, given a graph G and a vertex cover S′, there is a represents table R′ such1356

that endpoints that correspond to vertices in the vertex cover S′ are frozen and the remainder are1357

removed. Next, in this restricted case, we know that one row of the represents table R consists of1358

a duad of frozen endpoints. Hence, remove the endpoint from the row with a duad such that the1359

removed endpoint is in the subgraph G′. The other endpoint in the duad will be frozen and must be1360

in both the vertex covers S and S′, and hence, not in the subgraph G′. Then, follow the sequence of1361

remove and freeze operations, i.e., the duadic hop w.r.t. S. Consequently, the table R will become1362

the same as table R′ such that the endpoints removed from R during the duadic hop correspond to1363

the vertices in G′ that are from the vertex cover S, and the endpoints frozen in R during the duadic1364

hop correspond to the vertices in G′ that are from the vertex cover S′. Hence, after the duadic hop1365

w.r.t. S, table R becomes equivalent to table R′. Finally, given that duadic hop w.r.t. S in the1366

represents table R leads to a smaller number of frozen endpoints, and in turn, smaller vertex cover,1367

it implies that the S-duadic hop is, by definition, an S-diminishing hop. Overall, because S is not1368

a minimum vertex cover, the given table R has an S-diminishing hop.1369
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In summary, the alternating vertices in the subgraph G′ (please refer to “Relating S and S′
1370

to subgraph G′”) from the vertex cover S and S′ correspond to the removed and frozen endpoints1371

in the table R, respectively. Hence, the vertices in subgraph G′ correspond to the sequence of1372

endpoints that are removed and frozen, i.e., an S-duadic hop. The duadic hop is an S-diminishing1373

hop. Therefore, if S is not a minimum vertex cover, then there exists an S-diminishing hop.1374

This completes the other direction of the proof of correctness. In turn, it completes the overall1375

contrapositive proof that shows that S is the minimum-size vertex cover derivable from the represents1376

table R if and only if there is no S-diminishing hop in the represents table R.1377

We established the relation between a vertex cover S and an S-diminishing hop in the represents1378

table R for the restricted case where the represents table R has exactly one duad, i.e., exactly one1379

row with two frozen endpoints. We now generalize this result to the case where the represents table1380

R has at least one duad, i.e., at least one row with two frozen endpoints. As for the implementation,1381

the steps we mentioned (starting at the end of page 32) remain the same. However, when more1382

than one row has a duad, Step 1 is repeated for each of the existing duads unless a duadic hop1383

beginning at each duad is guaranteed to not be a diminishing hop. The formalization on how1384

to ensure that no diminishing hop remains and its corresponding time complexity is discussed in1385

Section 5 (Algorithm) and Section 7 (Time Complexity), respectively. Here, we continue to focus1386

on establishing the relation between a minimum vertex cover S and S-diminishing hop.1387

Theorem 7 (Diminishing Hop and Vertex Cover). Given a cubic bridgeless graph G, a corresponding1388

represents table R and a vertex cover S (derived using R), S is the minimum-size vertex cover1389

derivable from the represents table R if and only if there is no S-diminishing hop in the represents1390

table R.1391

Proof. Before we begin the discussion of the proof, we share two observations:1392

Observation 1. The size of the minimum vertex cover S will be between |V |
2 and |V | − 1, i.e.,1393

|S| ∈ [ |V |
2 , |V | − 1]3536.1394

More specifically, when |S| = |V |
2 , there are two facts: (i) S is the minimum vertex cover because1395

the size of perfect matching is |V |
2 (Lemma 1), and (ii) there is no duad, and in turn, there will be no1396

S-diminishing hop. Conversely, when there is no duad in a represents table R, and in turn, there is1397

no S-diminishing hop, it means that exactly |V |
2 endpoints are frozen (one endpoint frozen for each1398

row), which implies that S is the minimum vertex cover.1399

Observation 2. When the given graph is a cubic bridgeless graph G, the minimum-size (smallest)1400

vertex cover derivable from the represents table R implies a minimum vertex cover.1401

We now discuss the main proof. We again prove the contrapositive of the theorem. This proof1402

has subtle variations from the proof for Theorem 6, which necessitates a detailed discussion. We1403

start with the reverse direction, which is relatively simpler than the forward direction. Also, recall1404

that m denotes the number of vertices in the given graph (m = |V |).1405

(⇐) If there exists an S-diminishing hop, then S is not a minimum vertex cover.1406

Let S be a vertex cover of size m
2 + 1 ≤ |S| ≤ m − 1. Then the corresponding represents table1407

R consists of x frozen endpoints (and remainder m − x removed endpoints) where x is an integer1408

such that x ∈ [m2 + 1,m − 1]. Given that we use cubic bridgeless graphs, there is always a perfect1409

matching, which means that there are m
2 rows in the represents table. This, by pigeonhole principle1410

and by design requiring each row to have at least one frozen endpoint, implies that at least one row1411

in the represents table R consists of a duad (i.e., a row with both its endpoints as frozen).1412

Let u and v be the endpoints that form a duad. Given that there exists an S-diminishing hop,1413

we know that, by definition, the hop begins at the row with a duad, say, row i containing endpoints1414

u and v. In turn, the diminishing hop decreases the number of frozen endpoints in the table by at1415

least one because one of the endpoints from u or v will be removed. The resultant frozen endpoints1416

in table R′ correspond to a vertex cover S′. Hence, we know that either one of u or v will be in the1417

vertex cover S′. Formally, given that S ∩{u} ≠ ∅ and S ∩{v} ≠ ∅, it means that either S′ ∩{u} = ∅1418

or S′∩{v} = ∅. For the remaining m
2 −1 rows, we do not need to show which specific endpoints will1419

be in each of the vertex covers S and S′. It suffices to show that, by definition, the total number of1420

35The upper bound of |V | − 1 on the size of the minimum vertex cover is a relaxed one. We can prove a tighter
upper bound that can be provided by the use of representation scores. We omit a detailed analysis as it is not within
the scope of this paper.

36A closed interval [a, b] denotes all integers in the range of integers a and b, both inclusive. Formally, [a, b] denotes
all integers x such that a ≤ x ≤ b.
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frozen endpoints in the remaining m
2 − 1 rows of table R will be at least equal to the total number1421

of frozen endpoints in the remaining m
2 − 1 rows of table R′. Hence, |S \ {u, v}| ≥ |S′ \ {u}| or1422

|S \ {u, v}| ≥ |S′ \ {v}|. Consequently, |S| > |S′|. Therefore, because we were able to find a vertex1423

cover S′ of a size smaller than the size of the vertex cover S (|S′| < |S|), S cannot be a minimum1424

vertex cover. We now prove the other direction.1425

(⇒) If S is not a minimum vertex cover, then there exists an S-diminishing hop.1426

Let S be a vertex cover that is not a minimum vertex cover. Since S is not a minimum vertex1427

cover, there must exist at least one vertex cover S′ that is smaller than S, i.e., |S′| < |S|. We now1428

find the association between S and S′.1429

Take Symmetric Difference of vertices in S and S′: Let G′ be a subgraph of G such that1430

the vertices in G′ is a symmetric difference between the vertex covers S and S′. Formally,1431

G′ = S∆S′ = (S \ S′) ∪ (S′ \ S)

The edges in subgraph G′ correspond to the edges in the graph G that connect the vertices in G1432

that correspond to the vertices in G′.1433

Properties of the subgraph G′:1434

1. The edges not in G′ but in G are covered by the vertices that are in both the vertex covers S1435

and S′. Hence, the edges in G′ are the edges that remain uncovered when the vertices only in1436

S′ or only in S are removed.1437

2. Each edge in the subgraph G′ is covered by vertices that correspond to the vertices only in1438

the vertex cover S. Simultaneously, each edge in the subgraph G′ is covered by vertices that1439

correspond to the vertices only in the vertex cover S′.1440

3. The subgraph G′ can be a single vertex (singleton), a linear chain, a cycle, or a tree (or multiple1441

connected components of one or more of the four, or a bipartite graph).1442

Relating S and S′ to G′: If the graph G′ is a singleton or consists of a singleton component,1443

then that single vertex must come from the vertex cover S. For the remaining cases, the vertices1444

in (each connected component of) G′ alternate between a vertex in S and a vertex in S′. This is1445

because for every edge e = (u, v) in subgraph G′, if the edge is covered by vertex u in S, then it1446

is covered by vertex v in S′, or vice versa. Vertices u and v cannot be in the same vertex cover1447

together. Additionally, a vertex cover S (or S′) must contain either of the vertices u and v.1448

Identifying a Diminishing Hop from the subgraph G′: Until now, this proof in the forward1449

direction discussed graphs and did not mention the represents table, which is needed for diminishing1450

hops. Hence, we first associate the vertex covers S and S′ for the given graph G with the represents1451

tables R and R′, respectively, that correspond to the given graph G. More specifically, given a graph1452

G and a vertex cover S, there is a represents table R such that endpoints that correspond to vertices1453

in the vertex cover S are frozen and the remainder are removed. Similarly, there is a represents table1454

R for a given graph G and a vertex cover S′. Next, we discuss the existence of an S-diminishing1455

hop in each of the four types of graph G′:1456

• Singleton: A singleton in graph G′ consists of a vertex u from the vertex cover S. Because1457

there is no edge connected to this single vertex in G′, removing u from S keeps the vertex cover1458

intact and results in a smaller vertex cover S′. Correspondingly, there exists an S-diminishing1459

hop that removes the endpoint u from the duad in the represents table R, which results in a1460

represents table R′ with fewer frozen endpoints that correspond to the vertex cover S′.1461

For the remaining three graph types, each a special case of a bipartite graph, we make the1462

following common observation (that holds for a general bipartite graph): we know that at least1463

one row of the represents table R consists of a duad of frozen endpoints. Hence, to perform an1464

S-diminishing hop, remove the endpoint from a row with a duad such that (i) the removed endpoint1465

is in the subgraph G′ and (ii) the other endpoint in the duad is frozen and must be in both the1466

vertex covers S and S′, and hence, not in the subgraph G′. Then, follow the sequence of remove1467

and freeze operations, i.e., the duadic hop w.r.t. S. For a singleton, we discussed that the hopping1468

stops after the removal of one endpoint. We now discuss the cases for the remaining graph types:1469
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• Cycle: When there is an even cycle consisting of c vertices, then an S-diminishing hop cannot1470

be carried on the even cycle. The cycle consists of c
2 vertices each from the vertex covers S1471

and S′. Hence, a hop simply changes the vertices but does not affect the count. Additionally,1472

an even cycle can only exist with another component in the graph G′. Without another1473

component, the existence of only an even cycle implies that the vertex covers S and S′ are of1474

the same size, which contradicts our assumption. Hence, another component in G′ must exist.1475

There is never an odd cycle in graph G′. Assume that there is an odd cycle in G′. This implies1476

that the cycle consists of at least one vertex more from the vertex cover S than from the vertex1477

cover S′. In turn, this means that there exists an edge that connects two vertices from the1478

same vertex cover S (or S′). However, this is not possible because G′ is a symmetric difference1479

of vertices in S and S′, and hence, there can be no edge in G′ that connects two vertices from1480

S or S′. This contradicts our assumption about the presence of an odd cycle in G′.1481

• Linear Chain: A linear chain of even length cannot exist by itself without another component1482

in G′ for reasons that are the same as even cycles. Hence, we focus our discussion on linear1483

chains of odd length. When the graph G′ is (has) a linear chain of odd length, the linear chain1484

consists of at least one vertex more from the vertex cover S than from the vertex cover S′.1485

Hence, an S-diminishing hop can begin at any row with a duad in the represents table R such1486

that one of the endpoints in the duad corresponds to a vertex from S in the linear chain of G′.1487

Subsequently, the table R will become the same as table R′ such that the endpoints removed1488

from R during the S-diminishing hop correspond to the vertices in G′ that are from the vertex1489

cover S, and the endpoints frozen in R correspond to the vertices from the vertex cover S′.1490

Finally, the S-diminishing hop in the represents table R leads to a smaller number of frozen1491

endpoints, and in turn, a smaller vertex cover. Therefore, because S is not a minimum vertex1492

cover, the given table R has an S-diminishing hop.1493

• Tree: When G′ is (has) a tree, it must be a binary tree because it is derived from a cubic1494

graph G. When the length of the longest path between each pair of leaf vertices is even, it1495

results in the same case as an even linear chain. When there is an odd path, an S-diminishing1496

hop begins at a row with a duad in the table R such that one endpoint in the duad corresponds1497

to a vertex from S in G′. Subsequently, the table R becomes equivalent to R′ such that the1498

endpoints removed from R correspond to the vertices in G′ from the vertex cover S, and the1499

endpoints frozen correspond to the vertices in G′ from the vertex cover S′. More generally,1500

because G′ must be bipartite, this discussion (regarding an S-diminishing hop beginning at a1501

row with a duad in the R) holds for the general case when G′ is a bipartite graph.1502

In summary, for each graph type, the alternating vertices in the subgraph G′ from the vertex1503

cover S and S′ correspond to the removed and frozen endpoints in the table R, respectively. Hence,1504

the vertices in subgraph G′ correspond to the sequence of endpoints that are removed and frozen, i.e.,1505

an S-duadic hop. The duadic hop is an S-diminishing hop because the number of endpoints removed1506

is greater than the number of endpoints frozen (across all components when even components are1507

present). Therefore, when S is not a minimum vertex cover, there exists an S-diminishing hop.1508

This completes the other direction of the proof of correctness. In turn, it completes the overall1509

contrapositive proof that shows that S is the minimum-size vertex cover derivable from the represents1510

table R if and only if there is no S-diminishing hop in the represents table R.1511

Theorem 7 is designed to hold for a cubic bridgeless graph G, which always consists of a perfect1512

matching (Theorem 3). However, if we are not given a cubic bridgeless graph, then the graph may1513

not consist of a perfect matching. Consequently, at least one vertex won’t be listed as an endpoint1514

in the represents table R. Hence, the theorem that guarantees a minimum vertex cover does not1515

hold anymore. However, by design, we can generalize this result (for future use) by stating a new1516

corollary, which states that the vertex cover derived from the represents table R is the minimum-size1517

derivable from the endpoints listed in the represents table R. In other words, the vertex cover is the1518

minimum-size derivable from subset of vertices that are the endpoints of the edges in the maximum1519

matching found using the Blossom Algorithm during Phase I of the algorithm.1520

Corollary 1. Given a graph G, a corresponding represents table R and a vertex cover S (derived1521

using R), S is the minimum-size vertex cover derivable from the endpoints in represents table R if1522

and only if there is no S-diminishing hop in the represents table R.1523

Proof. A cubic bridgeless graph always consists of a perfect matching (Theorem 3). Hence, all1524

the vertices of a given graph are always listed as endpoints in the represents table R. Therefore,1525
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Theorem 7 guaranteed a minimum vertex cover. In other words, by design, an S-diminishing hop1526

finds the smallest vertex cover derivable from the endpoints in the represents table R. This implies1527

a minimum vertex cover when there exists a perfect matching, such as in a cubic bridgeless graph.1528

Therefore, when an arbitrary graph is given, this “generalized” corollary follows from Theorem 7.1529

4.4 Summary1530

The algorithm we discovered is a three-phase algorithm, which, when given a cubic bridgeless graph1531

G and a non-negative integer k, returns “Yes” if there is a vertex cover S of size at most k, and1532

“No” otherwise. The three phases are implemented sequentially (Figure 7):1533

I Find a Perfect Matching: Use the Blossom Algorithm to find a perfect matching.1534

II Populate Represents Table: Create a BFS tree and use it with the perfect matching to1535

implement an augmented version of the 2-approximation algorithm for the vertex cover problem1536

to populate a novel data structure called the “represents table”. We also discussed operations1537

and properties of the represents table.1538

III Diminishing Hops: The input to the third phase is the data structure represents table.1539

Foremost, assign a weighted number to each vertex (also known as an endpoint) in the table,1540

called the representation score ζ, which captures how well an endpoint is represented in the1541

table. Next, use the representation score ζ to freeze or remove each endpoint in the represents1542

table. The frozen endpoints correspond to a vertex cover. Finally, motivated by the use of1543

augmenting paths (a specific case of an alternating path) w.r.t. a given matching to find a1544

maximum matching, the third phase introduces diminishing hops (a specific case of a duadic1545

hop) w.r.t. a given vertex cover to find a minimum vertex cover. A diminishing hop differs from1546

the Vertex Cover Reconfiguration problem because we do not (i) stipulate that each remove /1547

freeze operation of a hop should result in a vertex cover or (ii) bound the number of operations.1548

Overall, the combination of all these phases implies that we get an unconditional deterministic1549

polynomial-time algorithm for the vertex cover problem on cubic bridgeless graphs.1550

5 Algorithm1551

We now present the core contribution of this paper, an algorithm to solve the VC− CBG problem. In1552

the algorithm, all ties are broken and all ordering (sorting) of vertices is done based on lexicographic1553

ordering unless noted otherwise. The ordering does not impact the correctness but ensures that for1554

the same input, the output remains the same.1555

Algorithm 1: VERTEX COVER(G, k)

Data: Cubic Bridgeless Graph G = (V,E)
non-negative integer k

Result: returns Yes if there is a Vertex Cover S of size at most k, No otherwise

1: Vs = lexicographically sorted set of vertices

2: // PHASE I

3: M = a set of edges in a perfect matching found using the Blossom Algorithm [Edm65]
4: if k < |M | then
5: return No
6: end

7: // PHASE II

8: R = POPULATE REPRESENTS TABLE(G,M, Vs)

9: // PHASE III

10: S = DIMINISHING HOP PHASE(R)
11: if |S| ≤ k then
12: return Yes
13: end
14: return No
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Algorithm 2: POPULATE REPRESENTS TABLE(G, M , VS)

Data: Cubic Bridgeless Graph G = (V,E)
Edges in Perfect Matching M
Lexicographically Sorted Vertices VS

Result: returns Represents Table R

1: T = an array of arrays storing sorted vertices at each level of a breadth-first search tree
seeded on the first vertex in VS , and each vertex in T is marked unvisited // Table 1

2: R = a four-column table, Represents Table, that stores the endpoints of an edge selected
during the for loop discussed below and the corresponding vertices each endpoint is
connected to through an edge // Definition 14, Table 2

3: // The following loop traverses the BFS-tree table top-down

4: for each level in T do
5: for each unvisited vertex u in level do
6: if there exists an edge that connects vertex u with another vertex on the same level

and the edge is in M then
7: select the edge
8: else if there exists an edge that connects vertex u with another vertex on the next

level and the edge is in M then
9: select the edge

10: end
11: Mark the two endpoints of the selected edge as visited in T
12: Insert a new row after the last row in R: the two endpoints of the selected edge and

the respective vertices each endpoint is connected to through an edge
13: Remove from graph G the selected edge and all the edges that are connected to the

two endpoints
14: If any vertex becomes edgeless in G, mark the vertex as visited in T

15: end

16: end
17: return R

Algorithm 3: DIMINISHING HOP PHASE(R)

Data: Represents Table R
Result: returns a Minimum Vertex Cover S

1: S = ∅
2: Augment the represents table R with two new columns corresponding to the two endpoints

in each row
3: For each endpoint u in the represents table R, insert into the new columns of the table a

representation score ζ such that ζu = −∞
4: R = COMPUTE REPRESENTATION SCORE(R)
5: R, S = VERTEX ELIMINATION(R, S)
6: for each integer a in [1, m2 ] do
7: R, S = DIMINISHING HOPS(R, S)
8: end
9: return S
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Algorithm 4: COMPUTE REPRESENTATION SCORE(R)

Data: Represents Table R
Result: returns Represents Table R with updated representation scores ζ

1: // The following loop traverses through the table R top-down

2: for each row in R do
3: // The following loop executes exactly twice

4: for each endpoint u in row do
5: if u is frozen then
6: ζu = -1
7: continue

8: else if u is removed then
9: ζu = -1

10: continue

11: else
12: ζu = 0
13: for each rowj in R that is above row do
14: x, y = two endpoints in rowj

15: // Lx denotes the list of endpoints that the endpoint x in rowj represents

16: if vertex u ∈ Lx then
17: ζu = ζu + max(0, ζy) + 1
18: else if vertex u ∈ Ly then
19: ζu = ζu + max(0, ζx) + 1
20: else
21: do nothing
22: end

23: end

24: end

25: end

26: end
27: return R

Algorithm 5: VERTEX ELIMINATION(R, S)

Data: Represents Table R
Vertex Cover S

Result: returns updated Represents Table R, Vertex Cover S

1: // The following loop traverses through the table R bottom-up

2: for each row in R do
3: R = COMPUTE REPRESENTATION SCORE(R)
4: if both endpoints in row are either frozen or removed then
5: continue
6: else if endpoint u in row remains and endpoint v in row is frozen then
7: R, S = FREEZE AND REMOVE(R, S, ∅, u) // ∅ denotes a null value

8: else
9: // at this point, both endpoints u and v in row are neither frozen nor removed, and

represent exactly one endpoint, namely each other

10: if ζu ≥ ζv then
11: R, S = FREEZE AND REMOVE(R, S, u, v)
12: else
13: R, S = FREEZE AND REMOVE(R, S, v, u)
14: end

15: end

16: end
17: return R, S
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Algorithm 6: FREEZE AND REMOVE(R, S, ψ, ω)

Data: Represents Table R
Vertex Cover S
Endpoint to be Frozen ψ
Endpoint to be Removed ω

Result: returns updated Represents Table R, Vertex Cover S

1: // Freeze Operation of Represents Table

2: Freeze endpoint ψ in R
3: Append endpoint ψ to S
4: Set the represents list Lψ of endpoint ψ in R to null
5: Delist endpoint ψ from every represents list in R
6: // Remove Operation of Represents Table

7: Remove endpoint ω from R
8: Remove endpoint ω from S (if present)
9: for each non-frozen and unremoved endpoint u in R such that ω ∈ Lu do

10: R, S = FREEZE AND REMOVE(R, S, u, ∅)
11: end
12: for each non-frozen and unremoved endpoint u in Lω do
13: R, S = FREEZE AND REMOVE(R, S, u, ∅)
14: end
15: Set the represents list Lω of endpoint ω in R to null
16: return R, S

Algorithm 7: DIMINISHING HOPS(R, S)

Data: Represents Table R
Vertex Cover S

Result: returns a diminished or the same Represents Table R and
a smaller or same Vertex Cover S

1: λ = ∅ // an array of endpoints (vertices) visited during diminishing hops

2: Rdiminished=R
3: Sdiminished=S
4: // The loop traverses through the table R top-down

5: for each row in R do
6: Roriginal=R
7: Soriginal=S
8: λoriginal=λ
9: // a duadic hop exists only if both endpoints u and v in row are frozen, and form a duad

10: if both endpoints in row are frozen then
11: for each endpoint u in row do
12: R, S, λ = DUADIC HOP(R, S, ∅, u, λ)
13: // this holds if the number of vertices removed > number of vertices frozen

14: if |S| < |Sdiminished| then
15: Rdiminished=R
16: Sdiminished=S
17: λdiminished=λ

18: end
19: R=Roriginal
20: S=Soriginal
21: λ=λoriginal
22: end
23: R=Rdiminished
24: S=Sdiminished
25: λ=λdiminished
26: end

27: end
28: return R, S
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Algorithm 8: DUADIC HOP(R, S, ψ, ω, λ)

Data: Represents Table R
Vertex Cover S
Endpoint to be Frozen ψ
Endpoint to be Removed ω
List of Visited Endpoints λ

Result: returns updated Represents Table R, Vertex Cover S, Visited Endpoint List λ

1: // During each execution of this algorithm, either ψ = ∅ or ω = ∅
2: if ω ̸= ∅ then
3: if ω ∈ λ then
4: return R, S, λ
5: end
6: Add ω to λ
7: Remove endpoint ω from R
8: Remove endpoint ω from S
9: Q = ∅ // a queue storing the endpoints to be frozen

10: for each endpoint u in Lω do
11: if u /∈ λ then
12: Add u to λ
13: if u /∈ S then
14: Q = Q ∪ {u} // enqueue endpoint u

15: end

16: end

17: end
18: for each endpoint u in R such that ω ∈ Lu do
19: if u /∈ λ then
20: Add u to λ
21: if u /∈ S then
22: Q = Q ∪ {u}
23: end

24: end

25: end
26: for each endpoint u in Q do
27: Q = Q \ {u} // dequeue endpoint u

28: R, S, λ = DUADIC HOP(R, S, u, ∅, λ)

29: end

30: end
31: // the following condition will be true only when an endpoint has been removed

32: if ψ ̸= ∅ then
33: Freeze endpoint ψ in R
34: Append endpoint ψ to S
35: // the following condition is equivalent to checking for the existence of a duad

36: u=the other endpoint that is in the same row of R as ψ
37: if u ∈ S then
38: R, S, λ = DUADIC HOP(R, S, ∅, u, λ)
39: end

40: end
41: return R, S, λ

1556

6 Proof of Correctness1557

We proved the relation between diminishing hops and minimum vertex cover in Section 4. Hence,1558

showing that the algorithm successfully searches for diminishing hops, which, combined with already1559

proven results, implies the correctness of the algorithm. Overall, we prove the following theorem:1560

Theorem 8. Algorithm 1 returns Yes if and only if the given instance of VC− CBG is a Yes instance.1561

More specifically, we prove the theorem through a sequence of lemmas. Foremost, in the reverse1562

direction, we have the following lemma:1563
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Lemma 4. If the given instance of VC− CBG is a Yes instance, then the Algorithm 1 returns Yes.1564

Proof. When the given instance of VC− CBG is a Yes instance, it implies that there is a vertex cover1565

S of size at most k (|S| ≤ k). Additionally, it implies that k ≥ m
2 . This is because a cubic bridgeless1566

graph always consists of a perfect matching (Theorem 3), which means the size of a maximum1567

matching M (equivalently, a perfect matching for our paper) is m
2 . Therefore, by Lemma 1, we1568

know that the size of a minimum vertex cover S′ is |S′| ≥ |M |, which means |S′| ≥ m
2 . Hence, each1569

vertex cover S in a set of vertex covers S, S ∈ S, will be of size |S| ≥ m
2 . Consequently, because1570

k ≥ |S| and |S| ≥ m

2

we know that1571

k ≥ m

2

Therefore, Line 5 of Algorithm 1 cannot return No.1572

Next, by design, we know that Line 5 of Algorithm 3 consists of a vertex cover S. This is because1573

the operations of the represents table R are designed to ensure that the frozen endpoints in table R1574

correspond to a vertex cover (Theorem 4). Finally, at the end of the execution of the loop in Line1575

6 of Algorithm 3, the final vertex cover S in Line 7 of Algorithm 3 consists of a minimum vertex1576

cover because there is no S-diminishing hop in the given represents table (Theorem 7). This will be1577

returned by Line 9 of Algorithm 3. This implies that no vertex smaller than S can exist. Therefore,1578

if the given instance of VC− CBG is a Yes instance, then each vertex cover S′ ∈ S that can be a1579

Yes instance must be of size greater than or equal to the minimum vertex cover and less than or1580

equal to k. Formally, |S| ≤ |S′| ≤ k. Hence, the condition in Line 11 of Algorithm 1 must be true1581

(|S| ≤ k), which means Line 12 of Algorithm 1 must return Yes. The execution of Algorithm 1 will1582

never reach Line 14, and hence, it cannot return No.1583

Next, in the forward direction, we have the following lemma:1584

Lemma 5. If the Algorithm 1 returns Yes, then the given instance of VC− CBG is a Yes instance.1585

Proof. If the Algorithm 1 returns Yes, then it can do so only if Line 12 of Algorithm 1 returns Yes.1586

This implies that Line 5 of Algorithm 1 cannot return No. Hence, the value of non-negative integer1587

k must be greater than the size of the perfect matching M found in Line 3 of Algorithm 1; formally,1588

k ≥ m
2 . This also implies that Lines 8 and 10 of Algorithm 1 must be executed, which are the two1589

main phases of the algorithm. We first discuss the execution of Line 8.1590

Line 8 of Algorithm 1 (Populate Represents Table): The Line 8 of Algorithm 1 invokes1591

Algorithm 2. The output of Algorithm 2 is a data structure called the represents table R. Line 121592

of Algorithm 2 inserts a new row to the table such that the endpoints of an edge selected in Lines1593

7 or 9 are listed. Because the algorithm only selects the edges that are in the perfect matching M1594

(Lines 6 or 8), it implies that the algorithm enlists endpoints of edges in a matching, which means1595

the endpoints form a vertex cover (Lemma 3). More specifically, in our case, the matching is a1596

perfect matching, and each perfect matching is a maximum matching, which in turn is a maximal1597

matching (Lemma 2). Hence, each vertex of graph G is listed as an endpoint in table R, which1598

trivially forms a vertex cover (Property 3). The Lines 1, 13, and 14 of Algorithm 2 are important1599

for the next phase as they ensure the table R has certain properties (Properties 1, 2, 4). The key1600

output of Algorithm 2 is that the endpoints of the resultant represents table R form a vertex cover.1601

Line 10 of Algorithm 1 (Diminishing Hop Phase): The Line 10 of Algorithm 1 invokes1602

Algorithm 3 with the represents table R as its input. The first three lines of Algorithm 3 are1603

initialization steps that are consequential for the next lines. Hence, we do not discuss them. Line 41604

of Algorithm 3 invokes Algorithm 4 (Compute Representation Score). Algorithm 4 assigns a score1605

to each endpoint. It does not alter the structure of the table or its endpoints and hence, it does not1606

need further discussion. Next, Line 5 of Algorithm 3 invokes Algorithm 5.1607

• Algorithm 5 (Vertex Elimination): The overarching goal of this algorithm is to freeze or1608

remove each endpoint in the represents table R using the representation score such that the1609

frozen endpoints correspond to a vertex cover S such that S ⊂ V (Property 4, Theorem 4)37.1610

37We leave the following discussion to future work: (i) how is the representation score used to decide whether to
freeze or remove an endpoint and (ii) the guarantees on the upper bound of the number of endpoints being frozen. In
particular, guarantees on the upper bound can be used to make the diminishing hops phase more efficient.
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More specifically, Algorithm 5 traverses through the represents table R bottom-up. For each1611

row, it recomputes the representation score by invoking Algorithm 4. Then, it carries out a1612

sequence of freeze and remove operations while adhering to the properties of the represents1613

table R. If both endpoints in a row of the table are frozen, then the algorithm does nothing.1614

By design, both the endpoints in a row cannot be removed. If one of the endpoints in a row1615

is frozen (and the other is neither frozen nor removed), then the other is removed (Line 7 of1616

Algorithm 5 invokes Algorithm 6 (Freeze and Remove)). Next, if neither of the endpoints in1617

a row is frozen or removed, one endpoint is frozen and the other one is removed based on1618

the representation score (Line 11 or 13 of Algorithm 5 invokes Algorithm 6 as appropriate).1619

Finally, the case when one endpoint is removed and the other is neither frozen nor removed1620

cannot happen (by design). Hence, Algorithm 5 does not need to cover that case.1621

Algorithm 6 is specifically designed to freeze or remove an endpoint. When an endpoint ψ1622

needs to be frozen, Algorithm 6 freezes the endpoint in table R (Line 2), adds it to the vertex1623

cover S (Line 3), and updates the corresponding represents lists (Lines 4 and 5). Lines 4 and1624

5 set the represents list of endpoint ψ to null and remove the endpoint ψ from the represents1625

lists of other endpoints, respectively. This operation denotes that the vertex ψ in the vertex1626

cover S covers each edge that connects ψ to its neighbors. Next, when an endpoint ω needs1627

to be removed, Algorithm 6 removes the endpoint from table R (Line 7), removes it from the1628

vertex cover S (if present; Line 8), and freezes each endpoint it represents or it is represented1629

by (Lines 9 to 14). The last set of operations denotes that the vertex ω is not in the vertex1630

cover S, and hence, each of its neighbors must be in S to cover each edge connected to ω.1631

In summary, Algorithm 5, through Algorithm 6, carries out a deterministic sequence of freeze1632

and remove operations such that each endpoint in the represents table R is either frozen or1633

removed. Consequently, the frozen endpoints correspond to the vertices in a vertex cover S.1634

Finally, Line 7 of Algorithm 3 invokes Algorithm 7 for a total of m
2 times. Each iteration of an1635

S-diminishing hop corresponds to one row of the represents table R.1636

• Algorithm 7 (Diminishing Hops): There are three aspects to be proven for Algorithm 7:1637

(i) establish the relation between a vertex cover S and an S-diminishing hop, (ii) prove that the1638

algorithm performs an S-diminishing hop when one exists, and (iii) m
2 calls to the algorithm1639

ensures that there exists is no S-diminishing hop when it terminates. Theorem 7 already1640

established that a vertex cover S is minimum if and only if there is no S-diminishing hop.1641

Hence, it remains to be discussed that Algorithm 7 is an algorithm that uses S-duadic hops1642

to search and perform an S-diminishing hop in the represents table R. Hence, when an S-1643

diminishing hop does not exist, S is a minimum vertex cover.1644

Lemma 6. Given a represents table R where each endpoint is either frozen or removed and1645

a vertex cover S that corresponds to the frozen endpoints in the table R, Algorithm 7 is an1646

algorithm to perform an S-diminishing hop if it exists.1647

Proof. When Line 7 of Algorithm 3 invokes Algorithm 7, input to Algorithm 7 is a represents1648

table R38 where each endpoint is either frozen or removed and a vertex cover S39. Note that1649

during each iteration, the updated values of represents table R and the vertex cover S are1650

passed. Line 1 of Algorithm 7 initializes an empty list that will store each endpoint that is1651

visited during a hop. Lines 2 and 3 keep a record of the represents table R with the smallest1652

number of frozen endpoints and of the smallest vertex cover S, respectively, during a given1653

iteration. Line 5 ensures a top-down row-wise traversal of the represents table R. Lines 6 to 81654

store the concerned data as it was when an iteration of the loop begins. This is needed because1655

an S-duadic hop removes each of the two endpoints turn-wise to assess which one leads to an1656

S-diminishing hop. Line 10 ensures the presence of a duad without which an S-duadic hop is1657

not needed. Consequently, Line 11 does an S-duadic hop for each of the endpoints in a duad.1658

Line 12 invokes Algorithm 8 (Duadic Hop). Line 14 assesses whether the vertex cover returned1659

by Algorithm 8 (Duadic Hop) is smaller than the smallest one, and if so, updates the relevant1660

variables (Lines 15-17). Lines 19 to 21 restore the relevant variables for the other endpoint of1661

the duad to undergo a duadic hop. Lines 23 to 25 ensure that after each endpoint of the duad1662

is traversed, the smallest vertex cover is used as input for the next row.1663

38The represents list Lu for each endpoint u in table R is given in the table such that no endpoint is removed from
any list. In other words, the represents list of each endpoint is the same as it was during the output of Algorithm 2.
This information is needed to hop to different rows.

39During each iteration, the values of R and S that are provided as inputs may be different.
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Next, we mentioned that Line 12 of Algorithm 7 invokes Algorithm 8 (Duadic Hop). Its inputs1664

are the represents table R, a vertex cover S, an endpoint to be frozen ψ, an endpoint to be1665

removed ω, and a list of visited endpoints. By design, when Algorithm 8 is invoked, either ψ1666

or ω will be null. An S-duadic hop always begins with the removal of an endpoint, as evident1667

from Line 12 of Algorithm 7. Foremost, an endpoint ω can be removed only if it is not visited1668

(Line 3). If the endpoint ω is marked as visited, it implies it was frozen during the removal of1669

another endpoint in another row. If not visited, ω is now marked as visited (Line 6), removed1670

from represents table R (Line 7), and removed from the vertex cover S (Line 8). A queue is1671

maintained to ensure that for each endpoint ω that is removed, the endpoints that correspond1672

to the neighboring vertices in the graph are marked as visited (if not already done so) and1673

added to the queue if not already frozen (Lines 10 to 25). For each endpoint u in the queue,1674

we hop from the row containing ω to the row containing u, which needs to be frozen (Lines 261675

to 29). An endpoint ψ is frozen in table R (Line 33) and added to the vertex cover S (Line1676

34) only when an endpoint was removed earlier. Next, if the neighboring endpoint of ψ is in1677

the vertex cover, it needs to be removed (if possible). Finally, an S-duadic hop will terminate1678

only when removing or freezing an endpoint in a duad or in another row, respectively, is1679

not possible. If the size of S decreases from the time when Line 12 of Algorithm 7 invoked1680

Algorithm 8, then an S-duadic hop is an S-diminishing hop.1681

We proved that Algorithm 7, along with Algorithm 8, performs an S-diminishing hop when1682

one exists. Next, we prove that m
2 calls by Algorithm 3 to Algorithm 7 guarantees that there1683

is no S-diminishing hop when the loop in Algorithm 3 terminates.1684

Lemma 7. Given a represents table R where each endpoint is either frozen or removed and1685

a vertex cover S that corresponds to the frozen endpoints in the table R, it takes at most m2
1686

S-duadic hops to ensure that there is no S-diminishing hop.1687

Proof. The proof for this lemma is divided into two parts: (i) to show the algorithm executes at1688

most m2 S-duadic hops, and (ii) an S-diminishing hop cannot exist after at most m2 S-duadic1689

hops.1690

(i) Line 7 of Algorithm 3 invokes Algorithm 7 m
2 times. Next, in the worst case, during each1691

of the m
2 iterations, there can be at most m

2 − 1 rows with a duad. Therefore, Line 12 of1692

Algorithm 7 invokes Algorithm 8 at most m
2 · 2 · (m2 − 1) ≈ m2 times. Finally, Algorithm 8 can1693

call itself at most m times, which is not considered in this analysis because the recursive calls1694

are part of an ongoing S-duadic hop, but not a new hop in itself. Hence, we showed that the1695

algorithm executes at most m2 S-duadic hops.1696

(ii) It remains to be proven that an S-diminishing hop cannot exist after at most m2 S-duadic1697

hops40. Firstly, we know that at least one of the 2 ·(m2 −1) S-duadic hops invoked in Line 12 of1698

Algorithm 7 is an S-diminishing hop, assuming an S-diminishing hop exists. More specifically,1699

if there exists an S-diminishing hop, then at least one of the endpoints in at least one of the1700

rows with a duad will be removed such that the remaining frozen endpoints in the represents1701

table R still form a vertex cover. Removal of such an endpoint during an S-duadic hop implies1702

an S-diminishing hop. Next, in a given represents table R, there can be at most m
2 − 1 rows1703

consisting of a duad. Hence, each time Line 7 of Algorithm 3 invokes Algorithm 7, at least1704

one row of the represents table R will become duad-less, again assuming an S-diminishing1705

hop exists. In other words, each S-diminishing hop implies that the number of duads in the1706

represents table R is decreasing (by at least one in the worst case)41. Therefore, in the worst1707

case, after at most m
2 calls to Algorithm 7 and consequently, at most m2 S-duadic hops, there1708

cannot be an S-diminishing hop.1709

Overall, we showed that after m
2 iterations of Lines 6 to 8 in Algorithm 3, there cannot exist1710

an S-diminishing hop in the represents table R.1711

40The idea behind having m
2

iterations of Algorithm 7 is inspired by bubble sort. More specifically, in bubble sort,
after each iteration, an element’s position is fixed. Similarly, after each S-diminishing hop, the number of rows with
a duad in the represents table R decreases by at least one.

41Alternative explanation: Line 7 of Algorithm 3 invokes Algorithm 7 m
2

times. Each iteration consists of 2 ·(m
2
−1)

S-duadic hops invoked in Line 12 of Algorithm 7. Moreover, during each iteration, if an S-diminishing hop exists,
then the number of duads goes down by at least one. Consequently, given that a given represents table R can have
at most m

2
− 1 rows with a duad to begin with, the m

2
invokes to Algorithm 7 by Algorithm 3 guarantees that an

S-diminishing hop does not exist because either (i) the represents table R will have no rows with a duad or (ii) no
possible S-duadic hop reduces the number of frozen endpoints in the represents table R.
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In summary, we proved that Algorithm 7, along with Algorithm 8, is an algorithm (i) to perform1712

an S-diminishing hop (Lemma 6) when one exists, (ii) that guarantees that no S-diminishing1713

hop exists when it terminates after performing at most m2 S-duadic hops across m
2 calls to1714

Algorithm 7 by Algorithm 3 (Lemma 7), and (iii) that is based on the understanding that the1715

non-existence of an S-diminishing hop means that S is a minimum vertex cover (Theorem 7).1716

After the termination of the loop in Line 8 of Algorithm 3, Line 9 of the algorithm returns a1717

minimum vertex cover S to Line 10 of Algorithm 1 because there will be no S-diminishing hop1718

(Lemma 6, Lemma 7, Theorem 7). This discussion effectively completes the proof of this lemma.1719

In summary, recall that we posited that for the Algorithm 1 to return Yes, Lines 8 and 10 of1720

Algorithm 1 must be executed. We subsequently discussed the execution of these lines. We proved1721

that for frozen endpoints in the resultant represents table R and the corresponding vertex cover S,1722

there exists no S-diminishing hop after the execution of Line 10 of Algorithm 1. This implies that1723

S is a minimum vertex cover (Theorem 7). Subsequently, when Line 12 of Algorithm 1 returns Yes,1724

the given instance of VC− CBG must be a Yes instance. Hence, if Algorithm 1 returns Yes, then the1725

given instance of VC− CBG is a Yes instance. This completes the proof in the forward direction.1726

The proofs of Lemma 4 and Lemma 5 complete both directions of the proof of correctness. Hence,1727

this completes the proof of Theorem 8.1728

7 Time Complexity Analysis1729

In this section, we discuss the time complexity of the algorithm (Table 14, Table 15, Table 16,1730

Table 17, Table 18, Table 19, Table 20, Table 21). Each table corresponds to each algorithm1731

(ranging from Algorithm 1 to Algorithm 8). m denotes the number of vertices V and n denotes the1732

number of edges E. However, for cubic graphs, we know that n = 3m
2 = O(m). Hence, for simplicity1733

and in line with the literature, we compute time complexity with respect to m.1734

In each table, we give the complexity of each line (each operation), the complexity of the loop1735

(complexity of line multiplied by the number of loop iterations) and the dominant complexity. For1736

convenience, the beginning of a loop, specifically the number of loop iterations, is highlighted (e.g.,1737

Line 4 in Table 15). Each statement within the loop is prefixed with a pointer (▶). In the case of1738

nested loops, an additional pointer (▷, >) is used. Whenever an algorithm calls another algorithm,1739

the latter’s worst-case time complexity becomes the former’s line complexity, which is denoted by1740

square brackets ([Table x]; e.g., Line 8 in Table 14).1741

Theorem 9. The asymptotic running time of Algorithm 1 is O(m5).1742

Proof. Line 10 in Algorithm 1 dominates the complexity of all other lines as shown in Table 14. This1743

dominant complexity is O(m5). Hence, the time complexity of the entire algorithm is O(m5).1744

Time Complexity of Algorithms with Recursive Calls: We elaborate upon the time com-1745

plexity of Algorithm 6 (Table 19) and Algorithm 8 (Table 21) because the time complexity of the1746

remainder of the algorithms is self-explanatory from the respective tables. Both of these algorithms1747

consist of recursive calls that require discussion.1748

• Algorithm 6 has recursive calls in line 10 and line 13. However, by design, Algorithm 6 executes1749

at most m times. This is because each time it is executed, at least one vertex is either removed1750

or frozen. Hence, after at most m calls, no unfrozen or unremoved vertex will exist. Each call1751

takes O(m) time. Overall, in the worst case, the height of the recursion tree is m and each1752

level has one subproblem taking O(m). Thus, total complexity is O(m)·O(m) =O(m2).1753

• Algorithm 8 has recursive calls in line 28 and line 38. Again, by design, Algorithm 8 executes1754

at most m times. This is because each time the algorithm is executed, at least one endpoint is1755

marked as visited using the variable λ. Hence, in the worst case, if one endpoint is marked as1756

visited during each call, then there can be at most m calls. After this, no unvisited endpoint1757

will exist. Each call takes O(m2) time. Thus, total complexity is O(m)·O(m2) =O(m3).1758

Notably, during each call, the algorithm never executes both, line 28 and line 38, together.1759

This is by design as each hop within an S-duadic hop can either result in freezing of an endpoint1760

or removal of an endpoint.1761
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Line Number Line complexity Loop complexity Dominant complexity

1 O(m · logm) - O(m · logm)
2 - - O(m · logm)
3 O(m3) - O(m3)
4 O(1) - O(m3)
5 O(1) - O(m3)
6 - - O(m3)
7 - - O(m3)
8 O(m3) [Table 15] - O(m3)
9 - - O(m3)
10 O(m5) [Table 16] - O(m5)
11 O(1) - O(m5)
12 O(1) - O(m5)
13 - - O(m5)
14 O(1) - O(m5)

Table 14: Line wise time complexity of Algorithm 1. W.l.o.g., we assume the average length of
vertex names is a constant and hence, ignore it in time complexity analysis of Line 1.

Line Number Line complexity Loop complexity Dominant complexity

1 O(m+m) - O(m)
2 O(1) - O(m)
3 - - O(m)

4 O(1) O(m) O(m)

5 O(1) ▶ O(m2) O(m2)

6 O(m) ▶ ▷ O(m3) O(m3)
7 O(1) ▶ ▷ O(m2) O(m3)
8 O(m) ▶ ▷ O(m3) O(m3)
9 O(1) ▶ ▷ O(m2) O(m3)
10 - - O(m3)
11 O(m) ▶ ▷ O(m3) O(m3)
12 O(1) ▶ ▷ O(m3) O(m3)
13 O(m) ▶ ▷ O(m3) O(m3)
14 O(m) ▶ ▷ O(m3) O(m3)
15 - - O(m3)
16 - - O(m3)
17 O(1) - O(m3)

Table 15: Line wise time complexity of Algorithm 2. A highlight denotes the number of loop
iterations. A pointer (▶) denotes that a line is within a loop. An additional pointer (▷) denotes a
nested loop. Note that the BFS-tree is traversed at most m times (by design) but asymptotically it
may traverse m2 times. Hence, we keep the latter time complexity as it does not impact the overall
complexity of the algorithm.

Line Number Line complexity Loop complexity Dominant complexity

1 O(1) - O(1)
2 O(1) - O(1)
3 O(m) - O(m)
4 O(m2) [Table 17] - O(m2)
5 O(m3) [Table 18] - O(m3)

6 O(1) O(m) O(m3)

7 O(m4) [Table 20] ▶ O(m5) O(m5)
8 - - O(m5)
9 O(1) - O(m5)

Table 16: Line wise time complexity of Algorithm 3. A highlight denotes the number of loop
iterations. A pointer (▶) denotes that a line is within a loop.

50



Line Number Line complexity Loop complexity Dominant complexity

1 - - -

2 O(1) O(m) O(m)

3 - - O(m)

4 O(1) ▶ O(m) O(m)

5 O(1) ▶ ▷ O(m) O(m)
6 O(1) ▶ ▷ O(m) O(m)
7 - - O(m)
8 O(1) ▶ ▷ O(m) O(m)
9 O(1) ▶ ▷ O(m) O(m)
10 - - O(m)
11 - - O(m)
12 O(1) ▶ ▷ O(m) O(m)

13 O(1) ▶ ▷ O(m2) O(m2)

14 O(1) ▶ ▷ > O(m2) O(m2)
15 - - O(m2)
16 O(1) ▶ ▷ > O(m2) O(m2)
17 O(1) ▶ ▷ > O(m2) O(m2)
18 O(1) ▶ ▷ > O(m2) O(m2)
19 O(1) ▶ ▷ > O(m2) O(m2)
20 - - O(m2)
21 - - O(m2)
22 - - O(m2)
23 - - O(m2)
24 - - O(m2)
25 - - O(m2)
26 - - O(m2)
27 O(1) - O(m2)

Table 17: Line wise time complexity of Algorithm 4. A highlight denotes the number of loop
iterations. A pointer (▶) denotes that a line is within a loop. Each additional pointer (▷, >)
denotes a nested loop.

Line Number Line complexity Loop complexity Dominant complexity

1 - - -

2 O(1) O(m) O(m)

3 O(m2) [Table 17] ▶ O(m3) O(m3)
4 O(1) ▶ O(m) O(m3)
5 - - O(m3)
6 O(1) ▶ O(m) O(m3)
7 O(m2) [Table 19] ▶ O(m3) O(m3)
8 - - O(m3)
9 - - O(m3)
10 O(1) ▶ O(m) O(m3)
11 O(m2) [Table 19] ▶ O(m3) O(m3)
12 - - O(m3)
13 O(m2) [Table 19] ▶ O(m3) O(m3)
14 - - O(m3)
15 - - O(m3)
16 - - O(m3)
17 O(1) - O(m3)

Table 18: Line wise time complexity of Algorithm 5. A highlight denotes the number of loop
iterations. A pointer (▶) denotes that a line is within a loop.
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Line Number Line complexity Loop complexity Dominant complexity

1 - - -
2 O(m) - O(m)
3 O(1) - O(m)
4 O(m) - O(m)
5 O(m) - O(m)
6 - - O(m)
7 O(m) - O(m)
8 O(m) - O(m)

9 O(m) O(m) O(m)

10 O(m) ▶ O(m2) O(m2)
11 - - O(m2)

12 O(m) O(m) O(m2)

13 O(m) ▶ O(m2) O(m2)
14 - - O(m2)
15 O(m) - O(m2)
16 O(1) - O(m2)

Table 19: Line wise time complexity of Algorithm 6. A highlight denotes the number of loop
iterations. A pointer (▶) denotes that a line is within a loop.

Line Number Line complexity Loop complexity Dominant complexity

1 O(1) - O(1)
2 O(m) - O(m)
3 O(m) - O(m)
4 - - O(m)

5 O(1) O(m) O(m)

6 O(m) ▶ O(m2) O(m2)
7 O(m) ▶ O(m2) O(m2)
8 O(m) ▶ O(m2) O(m2)
9 - - O(m2)
10 O(1) ▶ O(m) O(m2)

11 O(1) ▶ O(m) O(m2)

12 O(m3) [Table 21] ▶ ▷ O(m4) O(m4)
13 - - O(m4)
14 O(1) ▶ ▷ O(m) O(m4)
15 O(m) ▶ ▷ O(m2) O(m4)
16 O(m) ▶ ▷ O(m2) O(m4)
17 O(m) ▶ ▷ O(m2) O(m4)
18 - - O(m4)
19 O(m) ▶ ▷ O(m2) O(m4)
20 O(m) ▶ ▷ O(m2) O(m4)
21 O(m) ▶ ▷ O(m2) O(m4)
22 - - O(m4)
23 O(m) ▶ O(m2) O(m4)
24 O(m) ▶ O(m2) O(m4)
25 O(m) ▶ O(m2) O(m4)
26 - - O(m4)
27 - - O(m4)
28 O(1) - O(m4)

Table 20: Line wise time complexity of Algorithm 7. A highlight denotes the number of loop
iterations. A pointer (▶) denotes that a line is within a loop. An additional pointer (▷) denotes a
nested loop.
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Line Number Line complexity Loop complexity Dominant complexity

1 - - -
2 O(1) - O(1)
3 O(m) - O(m)
4 O(1) - O(m)
5 - - O(m)
6 O(1) - O(m)
7 O(m) - O(m)
8 O(m) - O(m)
9 O(1) - O(m)

10 O(1) O(1) O(m)

11 O(m) ▶ O(m) O(m)
12 O(1) ▶ O(1) O(m)
13 O(m) ▶ O(m) O(m)
14 O(m) ▶ O(m) O(m)
15 - - O(m)
16 - - O(m)
17 - - O(m)

18 O(m) O(1) O(m)

19 O(m) ▶ O(m) O(m)
20 O(1) ▶ O(1) O(m)
21 O(m) ▶ O(m) O(m)
22 O(m) ▶ O(m) O(m)
23 - - O(m)
24 - - O(m)
25 - - O(m)

26 O(1) O(m) O(m)

27 O(m) ▶ O(m2) O(m2)
28 O(m2) ▶ O(m3) O(m3)
29 - - O(m3)
30 - - O(m3)
31 - - O(m3)
32 O(1) - O(m3)
33 O(m) - O(m3)
34 O(1) - O(m3)
35 - - O(m3)
36 O(m) - O(m3)
37 O(m) - O(m3)
38 O(m2) - O(m3)
39 - - O(m3)
40 - - O(m3)
41 O(1) - O(m3)

Table 21: Line wise time complexity of Algorithm 8. A highlight denotes the number of loop
iterations. A pointer (▶) denotes that a line is within a loop.

8 Concluding Remarks1762

In this two-part study on the vertex cover problem on cubic bridgeless graphs (VC− CBG), we dis-1763

covered that: (i) VC− CBG is NP-complete (Theorem 1) and (ii) VC− CBG ∈ P (Theorem 2)42. As a1764

consequence of these two theorems combined with Proposition 1(c) in [Coo00], we get the following1765

corollary:1766

Corollary 2. P = NP.1767

42Theorem 2 is proven via Theorem 8 (algorithm’s proof of correctness) and Theorem 9 (time complexity).
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8.1 Additional Remarks1768

Practical Consequences + Ethical Implications: We presented a polynomial-time algorithm1769

for an NP-complete problem. However, the problem space for this paper has been narrowed down to1770

cubic bridgeless graphs (VC− CBG). Hence, the algorithm’s practical utility depends on how general-1771

izable it is for various graph types. Moreover, even for the narrowed-down problem of VC− CBG, the1772

time complexity is a higher-order polynomial. Therefore, the time complexity will only worsen for1773

the general case (and in turn, for using the algorithm for other NP-complete problems; see footnote1774

11). Hence, the practical impact of our work is (none to) limited until more efficient versions of this1775

(galactic) algorithm are found, for VC− CBG, for VC− CG, for VC, or for other NP-complete problems.1776

Given that we do not expect any immediate practical consequences of our work, we do not1777

expect any ethical implications either. That said, our work may eventually lead to algorithms that,1778

for example, may break certain variants of cryptography. Hence, we stress the need for a study1779

to understand the immediate and long-term implications of the algorithm to various fields. This1780

study should at least (i) provide appropriate quantification (e.g., how long is “long-term”, or what1781

order of the polynomial is not “practical” for how big a size of data in which field) and (ii) suggest1782

alternative solutions wherever applicable (e.g., use information-theoretic security).1783
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A Selection of Simple Connected Graphs1988

We hand-waved the selection of simple connected graphs for our study (e.g., see Footnotes 2 and 19).1989

Hence, we extensively discuss why this selection was worthy of hand-waving rather than a deeper1990

discussion. Consequently, we reiterate that all our results are unconditional43.1991

Let us zoom out to discuss our choice of the graph used in this paper from the family of graphs1992

(2-uniform hypergraphs). Foremost, it is clear by now that we use cubic bridgeless graphs. As is1993

the norm in literature, all graphs are unweighted undirected finite graphs. Additionally, w.l.o.g., we1994

stated that the considered graphs are simple connected graphs. We clarify the last choice.1995

Connected Graphs: We first discuss the requirement that graphs are connected.1996

• Graph Theory: The assumption on the graph being connected is standard in graph theory1997

literature about papers on matching theory. For instance, Line 35 on Page Number 843 (just1998

below Theorem 1) in [Ber57] assumes the graph to be connected. This is because in the1999

context of such work (and our paper), a technique that works for one connected component2000

implicitly works for each connected component of a given graph, and in turn, for the entire2001

graph, assuming all components share the common properties. Hence, when a theorem holds2002

for a connected component of a given graph, it implies that it holds for the entire graph.2003

• Computational Complexity: Our results in both parts of the paper hold when we have2004

a connected graph. Hence, if an unconnected graph is given, our results will hold for each2005

connected component of the graph. We simply need to take the union of the outcomes of2006

each connected component to get the overall outcome. For instance, executing Lines 1 to 102007

of Algorithm 1 for each connected component and eventually taking the union of the vertex2008

covers S we get in Line 10 indeed results in a minimum vertex cover.2009

Simple Graphs: We now discuss the requirement that graphs are simple. A simple graph, by2010

definition, is undirected.2011

• Graph Theory: If a matching theory (graph theory) result holds for general graphs, it implies2012

it will hold for the special case of simple graphs. Hence, each known result we use in the paper2013

holds for simple graphs, too. Our results are particularly designed to hold for simple graphs.2014

• Computational Complexity: From the computational complexity perspective, we discussed2015

how VC− CBG can alternatively be proven to be NP-complete by reducing from the VC on cubic2016

simple graphs by using the same construction we discussed in Part I. Before that, the VC on2017

cubic simple graphs can be proven to be NP-complete by reducing from VC− CG.2018

More specifically, if the given graph is not simple, we first remove each multiple edge and each2019

loop. Then, we add an edge to each vertex that has a degree less than three, such that the edge2020

connects the vertex to a subgraph of five dummy vertices (Figure 12). This ensures the graph2021

remains cubic while becoming simple44. Each subgraph needs 3 vertices to form an MVC.2022

d

e

b

c

a
connects to vertex

Figure 12: A subgraph of dummy vertices used to make a cubic graph simple.

In summary, in the context of this paper, all our computational complexity and graph-theoretic2023

results hold when we use simple connected graphs. Overall, for the sake of completeness, the2024

unconditional results in the paper use finite unweighted simple connected cubic bridgeless graphs.2025

43The use (of variations) of the words “assume” and “trivial” in Footnotes 2 and 19 was bothersome. While their
use in the context of the paper is appropriate, we add this discussion to the appendix to provide the reasons for our
choice of simple connected graphs. This discussion reinforces that our results are indeed unconditional.

44Alternatively, for each edge, split it and insert Block Type B1 (but not Type B2) as discussed in Part I.
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